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Preface

The purpose of this thesis was 1o develop a CAD package to automate the development of multivariable
controllers based on the Quantitative Feedback Theory design technique developed by Dr. Horowitz. During
this thesis effort, I had the opportunity to gain experience in a newly emerging field of control theory while
having the opportunity to develop a unique software package. Work performed using the CAD package
has suggested that it will substantially reduce the difficulty and time required to design a QFT controller.

My sincere thanks go to my advisor Dr. Constantine Houpis for his advice, time, and tireless effort
throughout my thesis effort and also to Dr. Horowitz and Dr. Lamont for their guidance and insight they
provided while on my committee. 1 would also like to give specral thanks to Capt. Jeff Bradley for putting
my QFT CAD package 1o the test on his thesis project. The software could never have reached its present
stage in the development process without knowledge gained through Capt. Bradley’s work. Finally, I would

like to th.nk my fellow classmates for their support and wish them the best of luck in their careers.

Richard Robert Saiing
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Abstract

This thesis describes the development of an analog MIMO Quantitative Feedback Theory (QFT) CAD
package for the automation of the multivariable control design process. The CAD package is capable of
carrying a design from probiem setup through the design process to a frequency domain analysis of the
compensated MIMO system. The package automates the selection of the weighting matrix, formation of
the square effective plants, the polynomial matrix inverse required to form the equivalent plants, generation
of templates, selection of a nominal plant, generation of stability, tracking, disturbance, gamma, and com-
posite bounds, loop shaping. design of the prefilter elements, and the frequency domain analysis of the
completed design. Disturbance allocation is automatically performed while generating the tracking bounds.
The package allows gain scheduling to be used in the weighting matrix. The improved method may be
applied for the case of a 2x2 effective plant. The package is implemented using Mathematica for use on

the Sun Workstations.
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1 Introduction

1.1  Background

Quantitative Feedback Theory (QFT) was developed by Dr. Isaac Horowitz, professor emeritus at the
Universty of Caltfornia at Davis. as a frequency response control technique for the control of systems with
uncertain plants and disturbance inputs. The first techniques were for a multiple-input single-output (MISO)
continuous time system. In 1979 Quantitative Feedback Theory was further developed for use as a method
of control for multiple-input multiple-output (MIMO) uncertain continuous time systems. First in 1961,
then more intensely 1 1986, Dr. Horowitz extended the QFT control technique to the control of discrete
time plants.

The firvt anulog QFT CAD package developed at AFIT, ICECAP-QFT. was developea in 1985 by
Sandra Cole (9). Although the JCECAP-QFT CAD package was extended to handle digital control problems
m 1w by Professor Constantine H. Houpis. Professor Gary B. Lamont, and Dr. Robert Ewing, it was still
Irmmied inupplicanion 1o MISO control problems. A second QFT CAD package for both analog and digital
syateris has since been develeoped by Dr. Oded Yaniv at Tel-Aviv University in Isreal (22). QFT CAD
roct.nes have wlso been developed by Baiey (4), Chait (8). and Thompson (27). However. like ICECAP-
QFT. Dr. Yann s QFT CAD pachage and the CAD routines developed by Bailey. Chait, and Thompson
are curenty mited moapphication to the control of MISO uncertain systems. The need therefore enisis
tor a MIMO QFT CAD package to automate the design process for the more difficult analog and discrete
MIMO controf svstem problem.

The need for automation of the design process was best illustrated by difficulties encountered by
previous QFT thests students, Each student was faced with the task of implementing the complex QFT
desizn process for the problem at hand. The time involved in working through the details of the design
provess greatly increased the difticulty of each thesis and himited the difficulty of problems attempted. In
addition, the details of the custom implementation and the manual techniques used increased the possibility
of errors. These difficulties would be greatly reduced by the availability of a MIMO QFT CAD package.

Industry and academia has repeatedly stressed the need for such a CAD package.




1.2 Research Objectives

The objective of this thesis is to develop a MIMO QFT CAD package as a tool 1o be used in future
rescarch and development work. As a tool, the CAD package will promote the use of the QFT control
technique In future thesis work as well as in the engineering community by automating the design process.

This thesis stresses the analog MIMO QFT design package.

1.3 Assumptions
Several assumptions are made regarding the design specifications and the system to be controtled:

e Plant uncertainty can be expressed by a set of linear-time-invariant (LTT) transfer functions

» Deterministic LTT transter functions can be used to model sensor and actuator dynamics

¢ Periormance specitications can be expressed by use of LTI transfer functions as upper and
lower bounds

e Stability requirements are constant across all frequencies (it is not unreasonable to allow them
10 be a function of frequency)

e Each weighting matrix element may consist of a unique s-plane LTI transfer function for each
rlant case

e Effective mxm square plant matrix, Pe, exists

e Diugonul Jominance achievapility at infinite ®

¢ No outside disturbances present

1.4  Limtations

The MIMO QFT CAD package, as currently implemented, imposes several limitations:
¢ Diagonal prefilter matrix F
¢ Diagonal compensator matrix G
o QFT Method 2 design for 2x2 systems only

e Onlv continuous-time control system design is considered
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1.5  Scope
The rescarch conducted for this thesis covers several areas:

e Selection of a development environment from available programming languages and control
packages

e Investigation of numerical precision requirements for successful implementation

¢ Investigation of previous QFT thesis work

e Investigation of previous QFT CAD packages

o Investigation of current QFT control techniques for control of MIMO svstems

e Investigation of Air Force contractor plant data formats

e Implementation of current QFT control theory to the development of a continuous-time MIMO
QFT CAD package

» Validation of MIMO QFT CAD package based on previous thesis work

1.6  Requirements
Several requirements have been imposed on the capabilities of the MIMO QFT CAD package:
e Loading of px/ plant matrix in contractor format
e Allow insertion of a &xm weighting matrix
e Allow insertion of a mxp sensor gain matrix

o Allow insertion of actuator and sensor dynamics

e Formation of mxm plant matrix inverse Pg’

< Extensible 10 discrete-time control problems

¢ Extensible 1o the QFT Improved Method 2 design technique
e Addition of MISO QFT subroutines

o Aljow transfer of completed design t0 MATRIXx

1.7  Software engineering requirements

¢ User interface
1-3




o Modular software

e Documentation

1.8 Approach

The first step in the thesis effort is the review of existing programming languages and control CAD
packages from which a platform is chosen for the development effort. The development effort begins with
the development of routines which accept the MIMO design data and transform the MIMO problem into
a set of MISO equivalent problems. Software is then developed to carry out the QFT design procedure
for the MISO equivalent problems. The final step in this thesis effort is the validation of the software
implementation of the MIMO QFT CAD package by comparing results obtained from the CAD package

10 those obtained by previous thesis students for two MIMO analog design problems.

1.9  Summary

This thesis consists of five chapters. The first chapter introduces the thesis problem. The second
chapter provides an overview of MIMO QFT theory as applied in this thesis. Chapter 3 discusses the
mcethad by which the MIMO QFT theory is applied during the development of the CAD package. In Chap.
4 the operation of the CAD package is validated by comparing results obtained from this package to those

obtained in two previous thesis efforts. Conclusions and recommendations are then presented in Chap. 5.




2 Basic Theory
2.1  Introduction: Overview of Multivariable Control Problem

Quantitative Feedback Theory (QFT) is applied in this thesis investigation to the control of uncertain
continuous time MIMO plants which are free from outside disturbances. The uncertain square plant Pe
shown in Fig. 2-1 has m inputs and m outputs. By use of a diagonal compensator G and a diagonal prefilter
F in the feedback structure, shown in Fig. 2-2, it is desired that the closed loop system meet a set of stability
and performance specifications defined for the problem. Tbace specifications are discussed in detai! in
Scc. 2.5. It a compensator and prefilter can be designed which meet the stability and performance require-
ments for al] controlled outputs and for all plant cases, then a robust control system design is achievable
and the design 1s considered successtul.

When using a diagonal compensator and prefilter. the closed loop system has m feedback paths. Each

feedback path. with associated prefilter and compensator., is a channel of the QFT controller.

[l

Fig. 2-2 MIMO QFT controller block diagram




2.2

The Plant P

The plant model P to be controlled is in general constituted by four component parts. A block diagram

showing the placement of the px! contractor plant model PcoNT, the actuator dynamics TacT, the sensor

dynamics Tsgxs. and the mxp sensor gain matrix WsgNs is shown in Fig. 2-3. The plant P of dimension

mx/ is, in general, not square.

For a plant model to be used in a QFT design, the plant must be square. The square plant Pe of

dimension mxm is formed from the non-square plant P by use of the weighting matrix W as shown in the

block diagram in Fig. 2-4. Algebraically, the plant P and the effective plant P. can be expressed, respec-

tively. as follows:

P = Wsgxs - Tsens - Pcont - Tact

19

e = P-W

L—

Actuators

Pcoxt

Fig. 2-4 Formation of square effective plant P,
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2.3 Modeling of Uncertain Plants

Any real-warld system to be controlled will inevitably be nonlinear, time varying, and uncertain to
son:z extent. Most control techniques, however, are directly applied only to linear-time-invariant (LTI)
systems (13). If a set of J LTI models can be obtained which effectively model the real world system,
then some techniques can be applied to design a robust controller. By basing its design on such a set of
LTI models, the QFT design technique produces a robust controller which will control the system in a
desirable manner despite its real-world properties. This is so, even for a large class of uncertain nonlinear
time varying plants (21:2-4;.

An example of uncertainty in the transfer function for a single-input single-output (SISO) plant model
at several frequencies is illustrated by the Nichols plot shown in Fig. 2-5. The scattering of the plant cases
about the nominal plant case (heavy dot) is shown along with an outline enclosing the plotted plant cases.

The range of plant cases is shown on the Nichols Chart (NC) for three different frequencies. The range
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Fig. 2-5 Uncertainty in SISO plant transmission
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The range of plant cases is shown on the Nichols Chart (NC) for three different frequencies. The range
on the NC of possible plant transmissions at a given frequency defines the region of uncertainty at that
frequency. For a QFT design, a sample set of plant cases taken over the range of plant uncertainty is used
to model an uncertain plant. It is particularly important that the sample set include plant cases at the
extremes of the region of uncertainty on the NC for each frequency of interest. This allows the QFT design
procedure to take the full range of plant variation into account.

Uncertainty, nonlinearity, and time variance in a MIMO plant model are thus modeled by using a set
of J LTI plant models. For a MIMO system, however, each plant case consists of an mxm matrix of
transfer functions. The uncertain MIMQ plant is therefore represented with a set of mxm transfer function
matrices. one matrix for each plant case. As in the SISO case, the sample set should include plant cases

ai the extremes of plant variation on the NC.

2.4  Actuator and Sensor Models

Dynamics of the actuators and sensors used to control a system are in general, and for the purpose of
this thesis. modeled by deterministic LTI transfer functions. The actuator transfer functions TacT(s) model
the dynamics involved in exerting the control effort required to apply an input to the plant. Likewise, the
sensor transter functions Tsexs,(s) represent the dynamics of the sensors used to measure the real-world
plant cutputs. The block diagram in Fig. 2-3 illustrates the use of actuators and sensors in the control of

a real-world system.  Each actuator and sensor is, in general, modeled by a unique transfer function.

2.5  Problem Specifications

Performance design specifications are placed on the controller design. Success of the design is judged
mainly on the the basis of satisfying these specifications. Other factors of importance which also may be
considered include the order of the controller and prefilter transfer functions, the bandwidth, and. in digital
systems. the sampling rate. However. for the purpose of this thesis. performance and stability specifications

are emphasized.
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2.5.1 Performance Specifications
Performance specifications for a compensated MIMO plant, shown in Fig. 2-6, can be given in either
the frequency domain or the time domain. For example, consider the role of the elements of the compen-

sated system control ratio matrix:

_ | ui(s) tiAs) .
T(s) = [ t21(s) 12205) } 2-3)

where tjj(s) represents the control ratio between the ith output and jth input as illustrated in Fig. 2-7.

The set of plots shown in Figs. 2-8 and 2-9 illustrate the upper and lower performance bounds of the
performance specifications in the time domain and frequency domain, respectively, for the compensated
AFTLF-16 aircraft as defined in a previous QFT thesis investigating fault tolerance (2:4-26). The four
plots in cach figur’e are arranged in positions corresponding to the 2x2 closed loop transfer function matrix
elements to which they apply.

For the off-diagonal transfer function elements, only an upper response bound is specified, since it is
desired that the response of the off-diagonal MISO loops remain below a specified bound. For the purpose
of this thesis effort, the bound must be specified in the frequency domain in the form of a transfer function.

Time domain performance specifications for the Lambda Unmanned Research Vehicle (URV) are

shown in Fig. 2-8. Both upper and lower tracking bounds, c(t)u and c(t)L respectively, exis' in the time

[
ro —
Fig. 2-6 Compensated system Fig. 2-7 CLTF Matrix Elements
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domain for the response of each diagonal tji(s) transfer function element of T(s) to a step command applied
10 its respective command input (see I 3. 2-7). These upper and lower bounds constrain the step response
magnitude 10 remain within a specified envelope. Only an upper bound exists in the time domain for each
off-diagonal closed loop (CL) transfer function tij(s), where i#j, for a step command input and for a
diagonal F. The upper bound constrains the magnitude of the undesired response due to coupling between
channels to remain below a specified envelope.

The time domain and frequency domain specifications can be related by the Laplace transform. The
complex frequency s times the Laplace transform of the time domain step response bounds yields the

frequency domain bound transfer functions, i.e.,
Tru(s) = § [Lﬁ[c(t)u]] (2-4a)

TrL(s) = 8 [i [ C(t)L]] (2-4b)

The converse does not apply in general, however, because there is no specification for phase in the
frequency domain.

Frequency domain specifications for the diagonal transfer functions include both upper and lower
tracking bounds. Tru and TRL respectively. These specifications define the range of frequency response
magnitudes permitted for the controlled output with respect to its corresponding command input. The
purpose of these bounds is to desensitize the closed loop system to variation in the plant in its significant
frequency range. There is a theorem, however, which states that any decrease in sensitivity achieved in
any w range must be paid for elsewhere in the frequency spectrum (17:1-9). This concept is expressed by

the following equation:

[ Logst do=0 2-5)
¢}
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where Sp is the sensitivity of the effective plant. A practical consequence of this is that the allowed variation

should exceed the plant variation in higher (than the significant) o range. This can be achieved if Tri has

an excess of poles over zeros greater than that of Tru.

2.5.2  Stability Specifications

In addition to desirable performance, the QFT controller must provide an acceptable stability margin.
The stability margin can be specified in terms of a phase margin v, a gain margin gm, or the corresponding
M. contour on the NC. The relationship between these three measures of stability, as applied in this thesis
effort, is illustrated on the NC shown in Fig. 2-10. If any one of the three stahility requirements are
specified. the remaining two can be calculated. These calculations are discussed in Sec. 3.13.1.

The My contour is the stability specification used directly for the QFT design technique, placing an
upper limit on the magnitude of the closed loop frequency response. The ML contour on the NC forms a

boundary which must not be violated by a plot of the open loop transmission transfer function for the

compensated system for all J plants.
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2.6  Insertion of a Weighting Matrix

In cases where the mx! plant matrix is not a square matrix of the desired mxm dimensions, an xm

weighting matrix W must be selected to form a square mxm effective plant Pe. A block diagram illustrating
the insertion of a weighting matrix is shown in Fig, 2-4.

For control of a multivariable system, one must apply at least as many inputs to the system as outputs
1o be controlled. When more plant inputs are available than required for control purposes, the designer
has additional degrees of freedom in the blending of plant inputs used to control the system. The weighting
matrix W used 10 allocate the control effort to the plant inputs must be chosen such that all effective plants
are full rank and the sign of the effective plants in the limit as w—=c is the same for all plant cases (17:3-15).
Once this requirement is satisfied, the designer seeks to obtain a minimum- phase effective plant. By
appiving the Binet-Cauchy theorem, the designer can determine whether a minimum-phase effective plant
is achicvable by the proper choice of the weighting matrix elements (17:5-17). If the condition of mini-
mum-phase can be satisfied. the designer may further refine the choice of weighting matrix elements 10
minimize the control effon required and to minimize the range of uncertainty of the effective plant transfer
function elements, as plotted on the NC.

In <ome multivariable control problems, the degree of uncertainty in the system to be controlied may
render impossible a successtul design (17:5-15). In these cases, the weighting matrix can be used to
mplement gain scheduling to reduce the uncertainty to a tolerable level. In an aircraft control problem,
for example, measurements of variables such as altitude. Mach, angle of attack, and dynamic .pressure may
be available 1 addition to the defined outputs. Functions of these additional measurements may then be
used m the weighting matrix of an aircraft flight control system to compensate for variation in plant

dynamics over the thght envelope.
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2.7  Polynomial Matrix Inverse

In order to begin the design of the QFT controller, the MIMO effective plant Pe is transformed into a
set of MISO equivalent plants. This transformation transforms the difficult MIMO design problem into a
set of straightforward MISO design problems. The simplicity gained by use of this transformation is one
of the major strengths of the QFT design process. The method of transforming the MIMO plant model
into a set of the MISO equivalent plants is given below without proof. For more information see (17:Ch.
3).

First. the polynomial matrix inverse of the effective plant matrix is taken:

P =ipy = 1/qj (2-6)

Next. the elements of P~! are iaverted to form the Q matrix:

Q =gy =:1/pj @7

The diagonal dominance condition is checked before the design process is continued. The diagonal
dominance condition must be met by the elements of the Q matrix in order for a QFT Method 1 design to
be tractable (17:3-17). If the condition of diagonal dominance is not met, then a QFT Method 2 (improved
method) design must be performed. If the result of the diagonal dominance test is unacceptable from the
point of view of the designer, the choice of weighting matrix W can be revised and the Q matrix recomputed.
QFT Methods | and 2 are discussed in Sec. 2.8, and the implementation of the diagonal dominance test is
discussed 1n Sec. 3.9.

The role of the Q matrix elements in the array of MISO equivalent plants is illustrated in Fig. 2-11.
The MISO loops are decoupled except through the disturbance inputs. Each MISO loop has one command
input and one disturbance input. The disturbance input is a function of the other controlled outputs. By
the principle of superposition, the MISO loop transmission consists of both a tracking and a disturbance
component.  However, when using a diagonal prefilter, only the diagonal MISO loops have a transfer

funcnion component due to tracking:
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ti=ty + g, (2-8)
while the off-diagonal loops, with fij=0 and i#j, have a transfer function component due to disturbance
only:

lij=tq, where i#j. @9

Expressions for tracking and disturbance transfer function components can be derived from the signal

flow graph of the (i,j) MISO loop:

gi (gii) (Li)
(te = fij —=—"—| = fij| ——— 2-102)
’ ”{ 1+ gi(qik } "[ 1+ (L) (
(g = @i (g _ (digh (Qa) (2-10b)
! 1+ gu(qu) I +(Lix
where [ is the index which specifies one of the J LTI plants, ie., I=1,2,..., J, which the quantities L;

and g, are associated with, and where:
Li = gqu -1

1s detined as the loop transmission transfer function.

Fig. 2-11 MISO equivalents for 3 by 3 effective plant
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The disturbance input, a function of all other controlled outputs, can be expressed by the equation:

4i=-% g}i( (2-12)
k=i
These MISO loops, each representing a closed loop transfer function element tjj in terms of the
compensator element gj, the prefilter element fj;, and effective plant qj; are required to satisfy the performance
and stability design specifications placed on the closed loop system.
For the diagonal MISO loops with upper and lower bounds:
a; < Itull <by forl=12,..J (2-13)
For the off-diagonal MISO loops with an upper bound:
Ilijll <bj for I=12,..J (2-19)
For each row of MISO loops a stability margin is defined:

2i (Qii )t

<ML fori=1.2..J 2-15
1 + gi(qiik

In order to design a compensator g for the MISO loops, the specifications are translated into bounds
on the NC which must not be violated by the open loop MISO transmission gqgii. In order for these bounds
1o take into account all plant cases, a set of templates, each outlining the range of plant uncertainty at a
particular frequency, are used to generate the bounds. Template formation and the use of the templates as

a tool for generating bounds on the NC is discussed in the following sections.

2.8  Improved Method

When using the QFT Method 1 design procedure, the compensators and prefilters are designed based
on the mxm set of MISO loops in which the effective plants obtained from the Q matrix are used. When
one of the m compensators g; is designed successfully, the compensator exceeds the frequency domain
performance specifications for some range of frequencies. In addition, correlation may exist between the
uncentainty in the MISO loops in which g; appears and the MISO loops for which the next compensator

is 10 be designed. When the next compensator is designed, neither the improved performance due 10 g
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nor correlation in the uncertainty in the MISO loops is taken into account. Failing to take this additional
information intc account leads to overdesign and may even preclude the possibility of a successful design
(17:5-15). This is the price paid for transforming the difficult MIMO problem mto a set of straightforward
MISO problems (17:5-1).

The improved method, also known as QFT Method 2, takes into account the improved performance
of the designed MISO loops and any correlation between the uncertainty in the designed MISO loops and
the MISO loops in which the compensator to be designed next appears. The improved method requires
the derivation of the effective q plant transfer function to be used in the row of MISO loops in which the
next compensator to be designed appears, i.e. for a 2x2 system in which the compensator g; has been
designed:

g2 (1+L)) ,
e = T ‘here Ly = 2-16
I -2+ L where L1 =giq11 {2-16)

For 4 2x2 system in which the compensator g2 has been designed:

qn (1+L2)

where L2 =gxq2 2-17
1 ="+ L)

Qite =

-~

For a 2x2 system )2 and 2 are defined as:

- _.___g:l ;’f{ (2-18)

In this thesis effoni. and the current version of the CAD package. the improved method is addressed

-

for a 2x2 MIMO problem only. For more information on the improved method, see (17:5-1).

2.9  Formation of Templates

A plant template outlines the range of uncertainty in the frequency domain transmission of a plant
transfer function for a specific frequency. as plotted on the NC. The template is formed by first plotting
the frequency domain transmission for each of the J plant cases, then enclosing the set of plant points with
an outiine. Figure 2-12 illustrates an example of a set of J =15 numbered plant points and the template

border assigned 1o them.  The selection of the template border is to some extent a matter of engincering
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judgment. The method by which the border is defined in the context of this thesis is discussed in detail
in Sec. 3.11. It is important to note that the absolute location of the template points on the NC is
unimportant; only the location of the plant cases relative to each other is required to define a template
border. When performing a manual QFT design, the template borders are drawn on clear plastic and cut
out for use on the NC. Plant templates must be generated for sufficient frequencies over the significant
o range. The template frequencies are the frequencies for which bounds on the MISO open loop trans-
mission giqii are generated and plotted on the NC. The bounds are then used for the design of the
compensator gi.

A nominal plant transfer function gjjo is also defined. The identified nominal plant point on the template
is used as the reference point upon which to execute the QFT design process. The bounds plotted on the
NC are bounds on the nominal open loop transmission Lio = gigiio. The nominal template point, while
often one of the J plant points, in general need not be chosen from among the J plant points. The nominal
template point need not even lie within the boundary of the template. The choice of nominal point has no
effect on the template outline regardless of its location; the nominal point is a point of reference used when
plotting the bounds. Nevertheless. the nominal plant is customarily chosen to be the lower left plant case

of the templates whenever possible.

an
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Fig. 2-12 Sample template with numbered plant cases
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2.10 Bounds on Nichols Chart

For a given row i of MISO loops, bounds on the nominal open loop transmission Lio = gigiic are
plotted on the NC, one set for each MISO loop in the row. For a template, generated for a given frequency
w=w; (see Fig. 2-13), several bounds may be included in the set plotted on the NC. These bounds include
a stability bound, a disturbance bound, a tracking bound, and a gamma bound (Sec. 2.10.3). Each set of
bounds is replaced by a single composite bound before beginning a design. If a compensator gi can be
designed such that all the bounds are satisfied, then the stability and performance specs for that row of

ti; can be satisfied. The theory for each of these bounds is now discussed.

2.10.1 Stability Bounds

The stability bounds constrain the maximum closed loop transmission based on the open loop transfer

function to have a bounded magnitude:

gi (qiiy

<ML fori=1.2..] (2-19)
1 + gi(qiit

This specification is met by requiring that the open loop MISO transfer function, for all J plants, does not
violate the ML constant magnitude contour on the NC. This can be assured by plotting a bound on the NC,
sec Fig. 2-14. which the nominal open loop plant transmission Lio = gigiic must not violate. This bound

can be plotted for a given frequency by plotting the path of the nominal point while traversing the ML
Stability bound

Template

e

. . M, contour
Nominal point L

Fig. 2-13 Template for bound Fig. 2-14 Platting of stability bounds
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contour with the template generated for that frequency as shown in Fig. 2-14, Because the shape of the

template plotted at each frequency is unique, the stability contour plotted for each frequency is also unique.

2.10.2 Disturbance Bounds

The responses of the off-diagonal MISO loops result from coupling and are considered undesirable
components which are added to the commanded diagonal MISO loop response. Performance specifications

require that the magnitude of the transmissions tjj for these off-diagonal MISO loops remain below the

bounds bij where i#j. From Eq. (2-9b) the upper bound implies the requirement:

Iyt = l d”{l +q;QJ

where the disturbance is a function of all other controlled outputs:

< by fori#j (2-20)

- ¢
d; ==Y " 2-21)
k21

Since the relative phases of txj and @ik are not aprior known, one must use the specifications which dictate

that Idyjl is less than an upper bound for each plant case / in the set of J plants:

m
( |diﬂmax )1 = z !q_::lﬁ (2-22)
k=)

The most extreme upper bound on Id;jl for all the J plant cases is then:

ldu‘m.n = [« |dij'ma.\ 3] ) (2-23)
max over [
Bascd on Egs. (2-20) and (2-23) a lower bound can be placed on 11 + 141
I+l 2 9] 1 jimax (2-24)

by
By substituting I, = rln Eq. (2-24) is transformed such that the disturbance bound is plotted on the

mverse NC:

m | by

: S
l+m: 1Q:il Idijimax




Simplifying by using the symbol Mp to designate the inverse NC constant magnitude contour;

m bij
< = .
Tem| S Mb where Mp Qi 10 (2-26)

In general, Mp is different for different plant cases since gii is different for different plant cases. From this
point forward the inverse NC constant magnitude contour is referred to as the Mp contour.
Equation (2-26) is in the form of a unity feedback system for which disturbance bounds can be drawn

by use of the templates on the inverse NC. The inverse NC, the NC tumed upside down, is used because

it allows a bound on L to be piotted on the NC given the restriction on m= (Lio)'l in Eq. (2-26).

Assume for a moment that for plant case /, illustrated on the template in Fig. 2-15, Eq. (2-26) places the
most severe restriction on m (and on Lio =-nl—';) at all phase angles of my, i.e., results in the maximum

value on the right-hand-side of Eq. (2-26). The disturbance bound can then be plotted as shown in Fig.
2-16, where the disturbance bound is traced by the nominal point as the Mp contour associated with plant
case { is traversed such that the point on the template border corresponding to plant case ! is in contact
with the Mp contour at all times. This is so because it is assumed that for plant case I the most extreme
bound exists on L, at all NC phase angles at which the bound is plotted. In general, a different point on
the template border results in the most severe restriction on L, a1 each phase angle ¢ for which the bound
is plotted. This issue is addressed in Sec. 3.14.2. For more information on the use of the inverse NC for

plotting disturbance bounds. see (11:712).

Boarder of template ( Mp contour ),

{

Plant case / |

o |
S v

Nominal point
Disturbance bound

Fig. 2-15 Template with plant case / Fig. 2-16 Formation of disturbance bound
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2.10.3 Gamma Bounds
Gamma bounds are a useful tool for improved method designs. Gamma bounds allow the designer to
design the current compensator such that the next effective plant does not have right-half-plane (RHP) poles
due to the current compensator design. Gamma bounds are not always mandatory. In the 2x2 case, if row
1 is designed first, a lower bound is placed on the denominator of q22¢ as defined by Eq. (2-16):
I1-vyi2+L11 £ My, (2-27)
This requirement is similar to that used for generating stability bounds. The method by which this

requirement is used to form bounds on the NC is discussed in detail in Sec. 3.14.3,

2.10.4 Tracking Bounds

Tracking bounds are used 1o insure that the variation in closed loop frequency domain transmission
ti=1; for i=j of the diagonal MISO loop does not exceed the variation dr permitted by the performance
tolerances a;i and bj; where:

& = 20 log(%] = 20 log(bii) ~ 20 log(aii) (2-28)

]
The variation in the closed loop transmission results from uncertainty in both the response due to

tracking and from the presence of the disturbance input:
ti = tr, +t4, 2-29)

where t;, and tq, are given by Eqgs. (2-10a) and (2-10b).
A portion of the permitted variation 8g of the total response t;; is therefore allocated to the transmission
due 10 disturbance tg, resulting in a reduced range of variation SR’ for the transmission due to tracking

t;, where:

SR = 20 IOj{tLJ = 20log(bii') - 20log(aii’) (2-30)
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Because the relationship between ty, and tg; is additive, the permitted variation is represented in terms
of magnitude rather than log magnitude when allocating for disturbance:
Aty = 10020 = gy gy (2-31a)
Aty = 1008720 = (2-31b)
By allocating the portion 2 74, to disturbance, the permitted variation in closed loop transmission t;
becomes A7, as shown in Fig, 2-17. The permitted closed loop variation in tracking is now:
Aty = AT~ 274, (2-32)
where:
AT, = bii — aj (2-33)
The performance tolerances for the closed loop transmission tg; then become:
aji’ = aj + 714, (2-34a)
b’ = bii - T4, (2-34b)
The requirement on the transmission due to tracking tr; becomes:
A" € Ity 1 € by (2-35)
And the requirement on the transmission due to disturbance tq; becomes:

Itg, | S 74, (2-36)

1.0 1

b
\[m /bl]’

At

A

/ll

08 -t
aijl
/
0-6 T ./all
—t —t
o1 02 10 20

Fig. 2-17 Allocation for disturbance
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With this disturbance allocation, tracking and disturbance requirements are placed on L; based on Eqs.
(2-34) and (2-35). The requirement on L; which is satisfied at a point on the tracking bound for a given
frequency @=w; and phase angle @ on the NC is:

Lm(TRr,,) - Lm(Try,) < SR’ (2-37)
where R’ =Lm(Ary,) = Lm(A7;-274;) and where TR,., and TR, are determined by maximizing and

minimizing the transmission with unity gain prefilter Tr over the outline of the template:

TR = l (2-38)

L
1+L;

with the template placed with the nominal point on the tracking bound.

Based on Eq. (2-36) the method discussed in Sec. 2.10.2 is used to determine the point on the distur-
bance bound on L; for the diagonal MISO loop at w=w; and at the phase angle ¢ on the NC. From Eq.
(2-24) the constraint on L; for bjj=174, is:

S |Qii| Idiilmax

IT+Ll 2 (2-39)
Irg,)

with Id)ilmax defined by Eq. (2-23) with i=j. The constraint of Eq. (2-39), along with the template for
® = . 1s used to determine the location of the point on the disturbance bound.

The value of 74, Is chosen such that Egs. (2-37) and (2-39) place the same restriction on L;; this is the
value of 74, for which the points on the tracking and disturbance bounds are identical at the phase angle
¢ on the NC and the value for which the least restrictive composite bound point on L; will be generated.
The method by which the CAD package determines this value of 74, is discussed in detail in Sec, 3.14.4.
Composite bounds are discussed in Sec. 2.10.5.

In general the value of 7g, is unique at each W=y and for each NC angle ¢ at which the bound is
pltted. Once a value of T4, is available at a given phase angle ¢. &R’ can be caiculated and a point on
the tracking bound can be plotted. To plot a point on the tracking bound, pick an angle for L;,, say 0°.

Place the template for the frequency of interest on the NC with the nominal point on the 0° axis. The
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template is then moved up or down the 0° axis as needed until the difference between the largest (Tr,,.)
and smallest (Tr,;,) closed loop transmissions is equal to the permitted variation in decibels:

LM(TRpus) ~ LM(TRm) = OR’ (2-40)

The position of the nominal point is then marked on the 0° axis. This procedure is repeated for a

range of angles across the NC, using a unique 74; at each phase angle, and the bound contour is drawn

through the set of points. By constraining the nominal loop transmission to be on or above the tracking

bound, the actual variation in t; will be less than or equal to 3g.

2.10.5 Composite Bounds

A set of composite bounds is often formed on the NC prior to compensator design. A composite
bound is formed by plotting only the dominant portions of a set of bounds, for each frequency. If the open
loop nominal transmission Lio = giQiio. Where qijo is the nominal plant, when plotted on the NC, does not
violate the composite bound, then no bound from the original set of bounds is violated. For a successful
compensator design, all bounds on Lj, must be satisfied for an entire row of MISO loops and for all
frequencies of interest. One row of MISO loops for a 3x3 MIMO system, for example, would require a
stahility bound. a tracking bound, and two disturbance bounds to be plotted for each frequency of interest.
For the case in which there are ten frequencies of interest, there would be a total of forty bound contours

to plot. By plotting only ten composite bounds in place of forty, clutter is reduced substantially.

2.11  Compensator Design

A compensator is designed which satisfies all requirements placed on it by the MIMO QFT specifica-
tions once the bounds for the entire row of MISO loops are plotted on the NC. The bounds for the entire
row MISO loops must be satisfied since the same g; appears in all MISO loops in a given row. The bounds
for all MISO loops in a given row can be plotted together on the NC since the same open loop transmission
L= gaq» appears in all MISO loops of a given row. The compensator is then designed based on the

bounds as platted on the NC,
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The compensator is designed by properly shaping the open loop transmission such that all bounds are
satisfied at the respective bound frequencies. The shaping is accompanied by adjustment of the compensator
gain, and by adding poles and zeros as needed. Two main approaches exist for loop shaping. In the first
approach, the initial open loop transfer function is taken to be gijo, the nominal plant. The transfer function
gi is then designed by adding poles and zeros as needed, and adjusting the gain until a desirable loop shape
is obtained on the NC (18:Sec. 3.8.2). For the second approach, the open loop gain L, is designed directly
by beginning with a simple gain and then adding poles and zeros, and modifying the gain to obtain a
desirable open loop shape on the NC. The equation gi=Lj (qi;o)" is then used to compute the com-
pensator g; (18:Sec. 3.8.1). The second approach is valid only for a minimum-phase, stable Giio. The first
approach usually gives a smaller order compensator, while the second approach gives the designer an

indication of the degree to which the design can be optimized. The first approach is used here.

2.12  Prefilter Design

A compensator which satisfies all bounds on the NC guarantees that the range of variation in the closed
loop transmission t;; is acceptable for the corresponding MISO loop. but does not guarantee that the
transmission lies entirely within the limits of the upper and lower tracking bounds bj; and aji. A prefilier
1s therefore designed such that the bounds bii and aj; are satisfied for all plant cases. The procedure below
illustrates the method b~ which the prefilter is designed.

First. as for tracking bounds on the NC, a portion of the permitted range of variation of t; is allocated
10 the disturbance. The maximum and minimum limits on the range of variation of tij are therefore made
more restrictive by the magnitude of the response due to disturbance It lmax. as illustrated in Fig. 2-17 on

page 2-19. The tolerances on ty, become:

by’ = bi = Itd, lmax (2-41)

aii’ o, = g Iman (2-42)
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Second, TR, and TR, the maximum and minimum values respectively of the diagonal MISO loop

transmission magnitude Tr (! with f; =1), are determined at the template frequencies where TR is:

TR = (2-43)

L
1+L;

TR, and TR, are used to restrict the permitted range of variation about the nominal ty; such that a
single nominal t;, can be plotted rather than requiring an array of J transmissions to be plotted on the Bode

plot, one for each plant case. It is easier to work with a single transmission within a pair of bounds then

to work with J transmissions within a pair of bounds.

The values Tr,,, and Tr, are obtained at each w; by placing the template for w; on the NC with the
nominal point at the location of Lio = gigiio for w=w;. The template outline is then searched to determine
the maximum and minimum closed loop transmissions TR, and Tr,.

Finally. the bounds on the nominal t;, are computed:

Lmiby') ~ Lm{TRu,) (2-44)
Lm(a;’y - Lm(Tr,) (2-45)
Once the prefilter bounds have been generated. a prefilter is synthesized such that the Bode plat of

the nonmunal t;, lies between the prefilter bounds and satisfies t(s)=1 in the limit as s—50. Examples of
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Fig. 2-18 Transmission without prefilter Fig. 2-19 Successful prefilter design
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the Bode plot of t;; with prefilter bounds, both before and after the prefilter has been designed, are shown

in Figs. 2-18 and 2-19.

2.13  Simulation

The completed QFT design must pass several levels of testing and validation. In past thesis work,
tests were performed to validate that the closed loop system satisfied the design specifications in both the
frequency and the time domains. Two tests were performed in the frequency domain. For the first fre-
quency domain test, the ML contour was plotted on the NC along with an array of open loop MISO loop
transmissions (L) = gi(qii)y for row i of the MISO loops, one for each of the J plant cases
(1=1,2,...]) to validate that the M}, contour was not violated for row i of the MISO loops. If the
M. contour was not violated, then it was concluded that the stability specifications had been met for row
i of the MISO loops. As an example, a plot of the open loop transmissions for channel 1 of a controller
designed by Philip Amold is shown in Fig. 4-29 on page 4-19.

For the second frequency domain test, an array of J Bode magnitude plots of each closed loop transfer
function element was plotted along with the performance tolerances to validate that the performance speci-
fications were satisfied in the frequency domain by the closed loop system. For each diagonal closed loop
transmission t,;. the J Bode magnitude plots were plotted along with the upper and lower tracking bounds
a;; and b;;. For each off-diagonal closed loop transmission j, the J Bode magnitude plots are plotted along
with the upper bound byj. The mxm closed loop transfer function matrix T, whose elements tjj are the
transmissions plotted on the Bode plats, is formed based on the equation:

T=(1+P.GT'PGF (2-46)
where | is the identity matrix, and Pe. F. and G are the mxm effective plant matrix, diagonal prefilter matrix,
and diagonal compensator matrix, respectively. These validation steps are important because they provide

a method of validation independent from the MISO CAD routines used, the choice of plant templates, and

the template border used.

2-24




The next simulation performed in previous thesis work involved setting up a System-Build model using
MATRIXx and running a time domain simulation for each plant case. The results of these simulations
were then used 1o validate that the figures of merit specifications, such as setiling time t, time to peak
tp. fise time Y, and peak response Mp were met. This simulation validated the robustness of the QFT
design.

For the final simulation, nonlinear dynamics such as saturation and hysteresis were included in the
System-Build model used in the time domain simulation. This simulation provided the most realistic

evaluation of real-world performance.

2.14 Summary

This chapter presented a general overview of the MIMO QFT design procedure as it applies the
development of the MIMO/QFT CAD package. The plant models and design specifications upon which
the design is performed are introduced, along with a discussion of the tasks performed as the design proceeds
from problem setup. through design, to simulation and testing. The discussion now shifts to the imple-

mentation of the QFT design procedures for the purpose of developing the MIMO/QFT CAD package.
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3 Implementation

3.1 Introduction

This chapter presents a detailed discussion of the implementation ~* . . the QFT control theory
presented in Chap. 2 and the development of the MIMO QFT CAD pack. Section 3.2 begins by
discussing the choice of programming environment. Sections 3.3 through 3.6 discuss the setup of the
control problem in preparation for the QFT design, including definition of plant models, sensor and actuator
dynamics, and sensor gain matrix. Sections 3.7 through 3.9 discuss the transformation of the MIMO
problem into a set of MISO equivalent problems. Section 3.10 discusses the implementation of the improved
method. Sections 3.11 through 3.16 discuss the implementation of the MISO QFT design procedures,
including definition of design specifications, generation of templates and bounds, and design of the com-
pensator and prefilter for each channel of the control system. Finally, Sec. 3.18 discusses simulation and

testing procedures implemented for the completed design.

3.2  Choice of Platform

Several platforms are considered for use in implementing the MIMO QFT CAD package. These
packages are considered on the basis of their capabilities, numeric precision, portability, ang cost. The
packages considered include Matlab (), MATRIXx (20), Control-C (10), Mathematica (29), Macsyma (19).
and the 'C’ language (26).

The 'C’ language is considered first. The greatest strengths of the *C’ language, as compared with
the other alternatives, are the portability, availability, and increased speed gained by use of the compiler-
based "C’ language. Also, the availability of Eispack (6), LINPACK (7), and ICECAP-QFT (9) routines
as well as a numerical methods toolbox (23) for 'C’ are helpful. The 'C’ language also presents several
drawbacks. First. numerical precision of the language is limited to the machine precision, unless extended
ty use of additional software. Second, the "C’ language. as a platform, does not offer an interactive mode.
Third. the language does not free the developer from the details of implementing and using advanced data
structures, such as a transfer function or a polynomial matrix. Finally, the 'C’ language does not free the

developer from managing the storage of the large amount of CAD data (pointer management).




MATRIXx is now considered. This package is specialized for engineering and control applications,
with a variety of software tools available for solving control problems and has an interactive user interface.
This strength comes at the expense of a number of weaknesses, however. First, numeric precision of all
calculations arc limited to 16 decimal digits of accuracy. Second, the language itself has many limitations,
such as the 4096 character limit on the code used for a "while’ or a *for’ loop, and the lack of the logical
’and’, ’or’, and 'not’ operators. Third, the types of data structures available are limited to those that can
be expressed using a two dimensional matrix. Fourth, the availability of this package is limited due to its
high price.

Matlab and Control-C are also considered. These packages, like MATRIXXx, have a variety of tools
useful for control applications and an interactive front end. They also, however, share the limitation of 16
decimal digits of accuracy for all calculations. Therefore, Matlab and Control-C are placed in the same
category as MATRIXXx.

Macsyma is also considered as a candidate. While this package is capable of working with and
performing calculations on symbolic expressions, it has difficulty sclving for the roots of a polynomial.
Because this is a critical step in control system design. Macsyma is not considered further.

The remaining package considered is Mathematica. This package has many strengths. Its most dis-
tinguishing features include the use of symbolic arithmetic and the capability of performing calculations
using arbitrary precision assigned by the user. In addition, Mathematica is equipped with an interactive
user interface and an extensive, well refined. "free form" language executed by the command interpreter.
This language allows for a wide variety of data structures of arbitrary size and dimension, including lists
of matrices, arrays of transfer functions, and expressions in any number of variables (29:Sec. 1.8). The
environment allows for selective hiding of information by use of local parameters, local variables, and local
contexts (29:Sec. 2.6). Finally, Mathematica has the advantage of making any application written for it
portable to many operating systems, including UNIX, VMS, and MS-DOS systems as well as the Macintosh.

The low cost of Mathematica also is advantageous, placing a low financial demand on potential users of
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the package. One weakness brought out in the review is that since Mathematica is not a compiler-based
language. it can be slow. This problem can be overcome, however, since the MathLink facility provided
with Mathematica allows a seamless interface to outside compiled software, including software written in
"C’. Another problem is the absence of control design tools offered by ather packages such as Matlab and
MATRIXx. Many of these tools are developed in this thesis for use in the CAD package, including routines
for generating Bode and Nichols plots for a transfer function, and software for transforming a polynomial
between coefficient form and factored form. Henceforth the CAD package developed in this thesis is
referred to as MIMO/QFT CAD.

In making the final decision regarding the environment to be used, the numerical accuracy of the
packages is considered a critical issue. In particular, the ability of the packages to accurately represent a
high order polynomial in both coefficient and factored form is critical in MIMO QFT CAD design problems.
A test case is used to illustrate this need for numerical accuracy.

A 50th order polynomial is entered in factored form, with the following set of roots each having at
Jeast & significant decimal digits of accuracy:

roots = { 1.0123456, 2.0123456, ..., 50.0123456 } @3-

The fuctored form polynomial is expanded into coefficient form. The roots of the expanded polynomial

re then obtained and plotted. The roots obtained from the polynomial in coefficient form represented with

50 digits of precision. plotted in Fig. 3-1 using Mathematica, are a close representation of the roots of the
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Fig. 3-1 Roots of high precision polynomial Fig. 3-2 Roats of standard precision polynomial
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original factored form polynomial. With a 16 digit of precision representation, however, the root locations
are displaced large distances from their original locations, shown as ploited by MATRIXx in Fig. 3-2.
The warping effect is accounted for by examining the polynomial in coefficient form expressed in
terms of the factored form coefficients from which it is obtained.
In factored form, let:
P(s) = (s+1n)(s+r2)(s+713)- -~ (S+1n) (3-2)
Multiplying out the terms yields the coefficient form polynomial:

pis) = s"+(Zr,)s""+(2rirj)s"“2+--~

i=1 i)

(X [Trs'+ ([T (3-3)
F

El i
Each coefficient can now be examined to determine the number of digits required to represent it without
error. Table 3-1 lists the number of digits required for each coefficient when using m digits of precision
for each root. Using even one digit of precision in the roots of the S0th order polynomial, in coefficient

form, in the example requires using 50 digits of precision to represent without rounding error the term

n
resulting from H rj.  Note also that in this case only 1 or 2 digits of precision could be used to represent,
I
n

without rounding error, the term resulting from Zl’i . The precision used for the roots in the example of

i=1
n n n
Coefficient 2 T z nr; z H I H I
i=l 12) =1 izj Fl

Table 3-1 Coefficient form precision requirements
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Fig. 3-2 has m=8 digits of precision and the machine precision is n=16 digits. Therefore. the first

n n
two non-unity coefficients Zri and Zrirj are expressed without rounding error. The center of gravity
i=l E]

n
of the roots Z n therefore is not affected by rounding error. The product of roots, however, requiring

i=1
400 digits 10 be represented without rounding error is rounded to 16 digits of precision. For this example.
each rounded coefficient ¢n is represented by a precise value an plus an error term ep:

Yln+e (3-4)

i=1 j=i

Ci = a1+ ¢y

(2]

n
U= a+e€o Hl’j+€0 (3-5)
i

In terms of the number of digits dropped. rounding error is most severe in the last term. The effect
of the rounding error eg is analogous to the effect of turning up the gain in a unity feedback system with
the polynomial as the denominator of the plant transfer function. This accounts for similarity between the
patternt of migration of the roots and the migration of roots on a root locus plot:

The closed loop transmisston of the system in the block diagram of Fig. 3-3 is:

€0

n ., n-1 (3-6)
S +ap-1S  +.--+(ap~+eg)

Clearly, more than 16 digits of precision are needed to accurately represent the 50th order polynomial
in coefficient form. Mathematica is the only package in which higher precision math can be used to solve

this problem. The use of high precision math is most critical in the polynomial matrix inverse procedure,
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Fig. 3-3 Effect of largest error term
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discussed in Sec. 3.9, where it is used to accurately compute the small difference of large numbers encoun-
tered during the matrix inverse and 10 accurately represent factored form polynomials which result from
the matrix inverse.

A second feature critical to the development of the MIMO/QFT CAD package to be used by future
thesis students is the availability of an interactive front end. No menu system can ever offer all the features
that will be needed for future projects. Allowing the designer to stop the design process to make modifi-
cations 1o the CAD memory variables or to perform calculations using the CAD memory variables, allows
any operations not performed inside the package to be handled outside the package using the Mathematica
command line interface or by use of user-developed Mathematica programs. An interactive front end is
available with MATRIXx, Matlab, Control-C, and Mathematica.

After considering the merits of the packages considered, Mathematica is chosen as the platform for
the CAD package. This choice is motivated mainly by the numeric precision and symbolic capability
available with Mathematica. The shortfall on execution speed associated with the interpreted execution is
remedied by exporting computationally demanding tasks to *C’ subroutines, while the absence of control
tools 1s addressed by developing the needed resources and adding them to the Mathematica development
environment. These tools include a Nichols plot function, a Bode plot function, a generalized plot function,

and polynomial manipulation functions.

3.3 Loading Plant Data

The first step in the design process is definition of the control problem. Loading the piant data has,
in the past. been the most tedious and error-prone step in defining the problem. Automated loading of
plant data in contractor format is implemented to eliminate these difficulties. Formats currently supported
include:

e Genesis simulation format
¢ MATRIXx state space format

o Transter function matrix loaded from memory




e Transfer function matrix loaded from console

3.3.1 Plant Model Parameters

Often, each plant model has associated with it a unique set of parameters. In an aircraft flight control
problem, for example, each plant model may be associated with a particular flight condition. The flight
condition could be defined, for example, by the vehicle altitude, Mach number, angle of attack, and weight.
A distillation column, on the other hand, may have temperature and pressure as parameters.

The CAD package allows the designer to specify a set of parameters associated with the plant models.
The parameter name, a memory variable name, a typical value, and a description are entered for each
parameter, For example, the plant parameters for the Lambda URYV are shown in Fig. 3-4 as listed by the
CAD package (18:3-2). The designer may then specify the values of these parameters along with a comment
10 be stored along with each plant model when a plant model is loaded. An excerpt from a CAD package
listing of plant models for the Lambda URV is shown as an example in Fig. 3-5. Nineteen plants were

used to model the aircraft over the range of variation of the parameters shown in Fig. 3-4.

3.3.2 Structure of Plant Set Data
The set of plant matrices is stored in a list along with the associated plant parameter variable names
defined in Fig. 3-4, the plant parameter values, and a comment string. In the excerpt of the listing of plant

models in Fig. 3-5. four plant parameters, the associated values of the parameters, and a plan! comment

Current List of Flight Condition Variables

Var:able Nominal Value Description

Xcg 20 Center of gravity X-position (% of MAC)
U 100 Forward airspeed (kts)

q 15 Dynamic pressure (lbs/sg_ft)

W 200 Weight (1bs)

Fig. 3-4 Plant parameter listing
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are shown for the first three flight conditions of the Lambda URYV as stored in the plant set data structure.
Each plant matrix is stored in the form of a transfer function matrix in s.
The plant list, a 4th order structure, is illustrated below using Mathematica syntax:

{ { comment;, { {paramy,,valy, },..., {paramm,, valm, } }, plant;},

{ commentn, { { parami,, vali, },..., { paramm,, valm, } }, planta} } (3-7
The form of the plant parameter list, 2 2nd order structure, is illustrated below:
{ { paramName,, paramVarName,, paramTypical), paramDescrip; },
{ paramNamep, paramVarNamep, paramTypicalp, paramDescripp } } (3-8)
Once a plant has been loaded the transfer function elements can be displayed in factored form or plotted
on a Bode plot. An example of the listing of the factored form transfer function of the (1,1) plant matrix
element for plant case 1 is shown in Fig. 3-6. A Bode plot of the transfer functions for all plant cases is

shown in Fig. 3-7. Alternatively, the Bode plot for any one of the plant cases could be plotted.

Current List of Plant Models
Plant Comments Parameter Value
[N SSLAT1 Xcg 21.8
U 110
q 35.05
W 181
£2 SSLAT2 Xcg 21.8
U 110
g 35.05
215
$3 SSLAT3 Xcg 21.8
U 110
q 40.08
W 181

Fig. 3-5 Plant model listing excerpt
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Plant Case: 1 Element: {1, 1)}

Roots of Numerator

Roots of Denominator
0.01410828486

-0.9733554679 + 3.9181016 1
-0.9733554679 - 3.9181016 1
-6.749157971

-0.9516270805 + 3.844813704 1
-0.5516270805 - 3.844813704 1I

Fig. 3-6 Factcred form transfer function

23.0351 Contractor Plant Element {2, 2}, All Plant Cases
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3.4  Loading of Sensor and Actuator Models

Dynamics of the sensors and actuators are specified in the frequency domain in the form of LTI transfer
functions at the console in either coefficient or factored form. A unique LTI transfer function may be
specified for the actuator used to drive each contractor plant input and for the sensor used to measure each
plant output. The actuator transfer functions are stored as a list:

actdyn = { Tact,. TaCT;. ..., TACT; | (39
The sensor transfer functions are also stored as a list:
sensdyn = ¢ TsExs, , TSENS, , . . . » TSENS; } (3-10)

It is assumed that there is no uncertainty in the actuator and sensor models and that LTI models can

be used for the purposes of the QFT design. (If there is uncertainty then the actuators and sensors should

be merged with the plant.)

3.5  Dimension of Control Problem

The dimension m of the control problem is the number of outputs that are to be controlled by the QFT
controller. The dimension of the control problem determines the dimensions of the mxm square effective
plant matrix. prefilter matrix, and compensator matrix, and must be defined before defining the sensor gain

matrix, the weighting matrix, or the design specifications.

3.6  Sensor Gain Matrix

In some instances, a subset of plant outputs or a linear combination of plant outputs are to be controtled.
In these cases, the designer can specify the appropriate sensor gain matrix Wsgns A block diagram
lustrating the placement of the sensor gain matrix when forming the plant P is shown in Fig. 2-3.

An cniry is accepted at the console for each matrix element, one element at a time, u; the format of a
ceetlicient fomt or factored form polynomial where the coefficients, poles, zeros. and gain can be constants
or any function of plant parameters defined in Fig. 3-4. Constants may be entered as elements of the sensor

cam matnix Wspns by specifying transfer functions with no poles or zeros but with the desired gain. Each




function entered for a transfer function is required to give a real number when evaluated at the "typical
valueé" of the plant parameters. Each function entered for a pole or zero is required to give a real or a
complex number when evaluated at the "typical values" of the plant parameters. If complex, the pole or
zero is included in the transfer function as a complex conjugate pair. If a pole, zero, coefficient, or a gain
gives a symbolic expression or cannot be evaluated, the designer is required to re-enter the expression.
The "typical values” are thus required for each plant parameter for the purpose of validating that the elements

of WsENs evaluate to gains or to transfer functions in s for the plant parameters of each plant case.

3.7  Weighting Matrix

A block diagram illustrating the insertion of the weighting matrix W to form the effective plant Pe is
shown in Fig. 2-4. The elements of W are defined by the designer in the same manner as for Wsens. The
weighting matrix must result in an effective plant Pe which is full rank and for which the diagonal elements
are the same sign for all plant cases as w—=c. It is also desirable that the determinant of the effective
plant be minimum-phase (17:Sec. 5-8). The first step in selecting the Ixm weighting matrix for an mx/
plant P with more inputs than outputs to be controlled (/ inputs and m outputs) is application of the
Binet-Cauchy theorem to determine whether a minimum-phase plant can be achieved by a proper choice
of weighting matrix elements. By the Binet-Cauchy theorem. a sufficient condition for the existence of a
minimum-phase Pe is that the determinant of some mxm submatrix of the elements of P be minimum-phase
(17:3-19). 1f such a submatrix can be identified from the !Y(-my m! possible choices, then a minimum-
phase effective plant is achievable. The CAD package presents, for inspection, a set of plant inputs which
results in a minimum-phase Pe. The designer then applies engineering judgment in choosing the weighting
matrix clements. The weighting matrix selection procedure is an area of research in itself. For more
information. consult (15).

The CAD program stores the weighting matrix elements in a two dimensional matrix:

; /
WIMANx = Wi, Wi, Wi ., Wml, Wm2 ... Wm @G-1D




3.8  Formation of Effective Plant Models

The effective plant transfer function matrices are formed, one for each plant case, after the weighting
matrix, actuators, sensors, and sensor gain matrix are defined. For each of the J plant cases, the weighting
matrix and sensor gain matrix, whose elements may be functions of plant parameters, are evaluated using
the plant parameter values associated with each plant model.

Therefore, for each plant case it

. | param) = paramVa)
Wi = [W(param|, paramy, - - - paramp)] {mmm;= anaVal (3-12a)

paramyp = panmValp

. param) = pararoVal |
WseNs, = [WSENS(param), paramy, - - - paramp)] |paroe = mamvaz (3-12b)

panmy, = paramValp
The eftective plant is then formed from its component parts:
P, = Pi- W; = (WSENS, - TSENS: PconT; - TACT) - W; (3-13)
When the etfective plant is formed, a common denominator is factored out of each of the components:
Wsexs. Tsens. Pcont. TacT. and W, The resulting effective plant Pe is thus obtained in the form of a

numerator matrix Pe, o of transfer functions in s and a common denominator transfer function Pey, 1.€...

(1

P

)' Ecnum = ‘rpij“ (3'14)

For cach plant case 7 this equation is expressed as:

1
- (Peden)l

EC- . (Eenum)l = {pUI (3-15)

and where each element of Pe,,,, is a polynomial in factored form.
By factoring out a common denominator, the numerical difficulty of the mairix inverse required to
form Q 1s reduced by requiring a polynomial matrix inverse rather than a transfer function matrix inverse.
Once a weighting matrix is chosen. the sign of the m diagonal elements of P. must be checked as

w— -~ tor all plant cases. The CAD package allows the sign of all plant cases to be examined for w—>
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in table form, as shown in Fig. 3-8. The sign of the effective plant elements can also be seen on the Bode
angle plot for each plant transfer function element, provided the plot reaches a sufficiently high frequency.
The default frequency range used by the CAD package is always sufficiently high.

Next. P. must be checked to insure that it is full rank. The CAD package allows the designer to list
the determinant of Pe, one plant case at a time, as shown in Fig. 3-9. A non-zero determinant for each

plant case is indicative of full rank. The numerator of the determinant, because it becomes the numerator

Eigh Frequency Signs of Diagonal Transfer Functions

Plant Case Channel 1 Channel 2
$1 + -
42
$3
44
; #5
: 46

+ o+ + o+ 4+

Fig. 3-8 Listing of effective plant signs

? Zeterminant of Effective Plant Matrix Plant Case: 1
t Rzzts of Numerator of Det(Pe) Roots of Denominator of Det[Pe]
o 0.01410828486
-l lZleaelli2 -0.9733554679 + 3.9181016 I

-0.9733554679 - 3.9181016 I
-6.199628022

-6.749157886

-9. + 6.244997998 I

=9. - 6.244997998 I

-50.

-50.

Factored fcorm gain multiplier: -2.4346665

Fig. 3-9 Listing of effective plant determinants
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of the equivalent plants gj. is examined since it determines the minimum- or non-minimum-phase character
of the system (17:5-11).

If any of the above criteria are found to be unacceptable, the weighting matrix is revised, Pe recomputed,
and the tests applied once again. This iterative procedure may be repeated until an acceptable weighting

matrix is obtained or the design process is aborted.

3.9 Inverse of Pe

Once a satisfactory weighting matrix is determined, and P. is derived, the polynomial matrix inverse
can then be performed from which the effective plants gji are obtained. Recalling that the effective plant

is factored inte a polynomial numerator matrix and a common denominator; i.e..

—_ l -

The inverse is performed using the Mathematica Inverse function:

-1 adlpk o
EL‘ - dCIEc =Py

- = pedcn " }_)e_nlum (3'1 7)

The etfective plants are then formed by inverting the elements pjj:

detPe 1 »
Q=5 =‘qm={—,} (3-18)
P Pi)

The matrix elements are then tested 1o validate that the condition of diagonal dominance is satisfied:

1. For m=2, must satisfy for all plant cases as w—r>c the equation:

iprip2 ! >tprapar (3-19)

2. For m=23, must satisfy for all plant cases as w—>c the equation:

»

» » * E ] Ed
Ipripaapial > Ipli paspial+1piapai pis I+ pr2p2spiil

+1piaplapii i+ 1piapaphl (3-20)




Essentially, these tests validate that the sign of the determinant of P. does not change over the plant
cases. It diagonal dominance holds for all plant cases, then the first method design can be attempted. If,
however, diagonal dominance does not hold for a plant case, then the QFT Method 2 (improved method)
design must be attempted. If the results of this test are not satisfactory from the point of view of the
designer, then the choice of weighting matrix W is modified, and the Q matrix recomputed. Iterative
modification of the weighting matrix may be continued until a satisfactory Q matrix is obtained or until
the design is aborted.

Additional tools for examining the effective plants gii of the Q matrix set include a Bode plot function
«.u a transfer function display subroutine. The Bode plot for a Q matrix element can be displayed for a
spevified plant case or for all plant cases together. Also, the CAD package allows the Q matrix transfer
function elements to be aisplayed in factored form for any selected plant case. The Bode plot for the entire
plant set is partict’arly useful for disployving the variation in effective plant transmission as an aid in
selecting template frequencies.

Before the effective plants qij are used for controller design, however, it is best .o cancel equal or
nearly _gual pole-zero pairs from all Q matrix transfer functions. In general, transfer functions of the Q
matrix returned by the polynomial matrix inverse procedure are high order compared to those of the effective
plant Pe from which they are computed.

The CAD package has a function which performs automatic cancellation, canceling pole-zero pairs
based on a user specified ratio of the distance between the pole-zero pair to lﬁe distance of the zero from

the origin:

| Spole — S |

i S

ralio > —EoS &0 3-21)
I Szero !}

Singe pole-zere pairs are cancelled in both the right-half and left-half planes, the designer must be sure
to select a ratio small enough such that only nearly identical RHP pole-zero pairs introduced by the
polvnomial matrix inverse procedure are cancelled. Physically meaningful RHP pole-zero pairs must not

be cancelled.




3.10 Applying the Improved Method

The improved method (QFT Method 2) can be applied for a 2x2 MIMO system using the MIMO QFT
CAD package once one of the two loop transmissions has been designed. The improved method imple-
mentation uses Egs. (2-16), (2-17), and (2-18) to form a new set of effective plants. An improved method
plant is generated for each plant case, replacing the effective plant obtained from the polynomial matrix
inverse procedure. Once the effective plants are replaced by the improved method effective plants, the
design procedure for QFT Method 2 proceeds in the same manner as for a QFT Method 1 design. The
designer proceeds with generating templates and bounds on the NC, and designs the compensator and

prefilter based on the improved method effective plants.

3.11 Templates
Before the plant templates are generated, the CAD package requires the designer to specify the template
frequencies. The specified frequencies are stored in a list:
flist = ' freqy, frep, . .., freqy ' (3-22)
Plant templates are generated, one for each template frequency, to outline the range of uncertainty in
the transmission of the effective plant g;; (or the effective plant gjje when the improved method is used).
Several steps are required to generate a template. First, the log magnitude and angle in degrees are evaluated
for each of the plant cases and are placed in a list of template point locations. Next, the magnitude and

angle of the center of the distribution of plant cases on the NC is calculated:

)
Z M; (3-23)

Q=7 ) O 1-24)

The polar angle of each plant case with respect to the center of the distribution is then calculated, and

the list of J plant cases sorted based on the polar angle. A set of line segments are now drawn around the
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outline without zig-zagging back and forth across the template. For the final step, all plant cases which
can be enclosed in the interior of the template by a line segment connecting the two adjacent template
points are dropped from the outline. This procedure is analogous to placing a rubber band around a set of
nails, representing the template points, and retaining only the outermost plant points grabbed by the rubber
band. For a more detailed discussion of the procedure for generating the convex template outline, with all
interior angles less than 180°, see (1:43).

Formation of a convex template outline is but one approach to generating a template. An alternative
approach used by Yaniv (22), the grid method, generates an array of plant points over the range of variation
of plant transfer function parameters. This approach was not chosen for the MIMO/QFT CAD package
due to the fact that the ranges of variation of plant transfer function parameters and correlation among plant
transfer function parameters which vary is unknown in many control problems. In aircraft flight control
problems, for example, unstructured uncertainty in the plant matrix is not easily modeled in terms of
variation of plant transfer function parameters. Only a set of representative plant matrices may be available
over the range of uncertainty of the aircraft. In addition to grid method another altemnative approach was
developed by Bailey (4) but was not used for the MIMO/QFT CAD package because it also requires the
range and correlation of variation of plant transfer function parameters be known. Formation of the convex

template outline is therefore used to generate templates for the MIMO/QFT CAD package.

3.12  Choice of Nominal Plant

In addition to generating the templates, a nominal plant transmission is chosen. In general the nominal
plant nced not be chosen from the set of plant cases. For an analog QFT design, however, the package
requires the designer to choose from the set of I effective plants. While any plant case can be chosen as
the nominal, an accepted practice is to select the plant case at the lower left comner of the templates whenever
possible.

The package allows the designer to display a plot of the numbered plant cases for a user specified

template frequency. The designer chooses a nominal plant from the set of plant cases. A chart of the
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templates is then displayed with the nominal point emphasized, as shown in Fig. 3-10. If the choice of
nominal point is not satisfactory, another nominal point may be selected.
Once a nominal plant case is chosen, the template is shifted such that the nominal plant case is located
at (Odeg,0dB) on the NC:
M; = M; — Muominal foralliin] (3-25a)
®i = @i — Qnominal foralliin]) (3-25b)
This can be done because only the location of the plants relative to each other is of importance when
generating bounds. The template can then be shifted on the NC such that the nominal plant is at a desired
location simply by adding the coordinates of the desired location to all plant cases. In this way, the template

can be conveniently placed at any desired location on the NC.

3.13  Specifications

The design specifications must be defined before bounds are generated and any compensator or prefilter
elements are designed. Specifications for gamma bounds are optional, and may be defined when using the
improved method.

db
200 §-

150

w=0.02 w=—0.08 we=O.5

100 B

| |

we—8 W20 w50

"
100 200 300 400 500 6500
degrees

Fig. 3-10 Templates with nominal point emphasized
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3.13.1 Stability Specifications

A stability margin must be specified for each row of MISO loops. As discussed in Sec. 2.5.2, the
CAD package allows the stability margin to be specified in terms of the gain margin gm, the phase margin
angle v, or the corresponding ML contour. Any one of these three specifications can be determined from
any of the others. This is illustrated graphically on the NC shown in Fig. 2-10. Only the ML contour
stability specification is stored in memory.

If gm or y are given, then ML, in dB can be computed using the equations:

ML = 20logio (3-26)
(\ﬁ - cosz('y—180°) J
M 1078720 ).
L = 20logio m (3-27)
Conversely, if My, is given in decibels:

1 - Mg?
-]

- m
Y= 180°—cos“( 1 — M2 ) (3-29)

where the closed loop magnitude associated with the ML contour is:

M,, = 10ML/20) (3-30)

Equations (3-26) and (3-29) are derived in Sec. 3.14.1 in which plotting of stability bounds is discussed.

3.13.2 Performance Specifications

Performance tolerances must be defined for each input-output response relationship. These tolerances
are specified in the frequency domain, and are defined in transfer function form at the console. An array
of Bode magnitude plots can then be plotted for the performance tolerances. The transfer functions are

then stored, as entered. using the following structure:




pspecs = { {{bi,an },...,{bim } },

{{bmr }..., {bmm,amm } } } (3-31)

3.13.3 Gamma Bound Specifications

The gamma specifications are optional, and may be defined when using the improved method. Gamma
bounds provide insight into the loop shaping procedure which allows the designer to avoid unnecessarily
introducing new right-half-plane poles into the equivalent plants of remaining channels. Placing additional
restrictions on the compensator currently being designed may substantially reduce the difficulty of perform-
ance bounds on loop transmissions yet to be designed. The improved method requires the derivation of
the effective q plant transfer function, i.e. for a 2>2 system in which the compensator for channel 1 has

been designed:

1+L
Q26 = Q22 (1+L)

= 3-32
l-m2+L) (532

By proper design of the compensator g1, new RHP poles are not introduced in g22.. In order to plot
the gamma bound for channel 1, a minimum value is specified for the magnitude of the denominator of
Eq. (3-32).

My S 11-viz+L1! (3-33)

For the case in which the compensator for channel 2 is designed first, the requirement on channel 2

My S H1-y + L2l ' (3-34)

For a 2x2 system ¥12 and v72; are defined as:

p12 P21
oy 2 D 3-35
T2 = Y T (3-335)

The minimum value for each channel is stored in a list of the form:
gspecs = | gspecs...., gspecsm | (3-36)

At the present time, the CAD package can generate gamma bounds only for a 2x2 MIMO problem.
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3.14 Generating Bounds

This section provides a detailed discussion of the methods used by the MIMO/QFT CAD package to
generate stability, disturbance, gamma, and tracking bounds plotted on the NC. Methods for generating
bounds have also been developed by during previous research efforts. Those interested in alternative

approaches to generating bounds may consult Cole (9) and Bailey (4).

3.14.1 Stability Bounds

A stability bound is plotted for each template. Stability bounds constrain the maximum closed-loop

transmission with unity gain prefilter to have a bounded magnitude:

2i (i)

<ML forl=1,2,...7 (3-37)
1 + gi(qii)

The bound is plotted for a given frequency by plotting the path of the nominal point while traversing
the ML contour with the template generated for that frequency tangent to the My, contour at all times. To
do this, the software must be able to determine the point of tangency on the outline of the template and
the location of the template, when tangent to the ML contour at that point, as the ML, contour is traversed.
To accomplish this task, an equation is derived which gives the NC magnitude M to which a template point
at the NC phase angle ¢ must be shifted to be in contact with the My, contour (13). The use of this equation
to plot points on the stability bound is then discussed.

For a given point along the outline of the template, at a given angle ¢ on the NC, an equation can be
derived for the open loop transmission magnitude M required for this point to be in contact with the ML
contour (13). The derivation begins with the requirement that the magnitude of the closed loop transmission

be equal to the magnitude Mm associated with the My, contour for the open loop transmission L where

Mm = 10M2% and My is given in decibels:

3.38
1+L ( )

L ‘
Taking the magnitude of the numerator and denominator, with L=M e yields:
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M
Mm =
I 1 + Mcos(¢) + jMsin(¢p) |

M

= = (3-39)
v (1+Mcos(ep))"+(M s'm(<p))2
Squaring both sides and multiplying both sides by the denominator yields:
Ma [ (1+Mecos(9) )2 +(Msin9))? | = M? (3-40)
Multiplying out the left side and using the identity si112((p)+ cosz(<p)= 1 yields:
Ma [ 1+2Mcos(e) + Msin’(p) | = M? (3-41)
Subtracting M? from both sides and multiplying out terms yields a quadratic equation in M:
( Mz~ 1)M>+[2 MA cos(@)] M+ Mz, = 0 (3-42)
The quadratic equation has two solutions for the open loop transmission magnitude M:
M = ~2 cos(@) Ma +V 4 coszgp) M& - 4MA (M4 - 1)
2(Mm-1)
~cos(9) + Veos(9) - (1 - M)
= (3-43)

(1- M)
In addition, an equation must be derived for the range of angles for which real solutions for Eq. (3-43)
exist. This range is then used to determine the range of angles over which the stability bound exists. A
real solution for Eq. (3-43) exists when:

cos*(@) = (1-Ma ) 2 0 (3-44)

The equation below can be solved for the angles which bound the range of real solutions:
cos’ (@)~ (1 =Mm2 ) = 0 (3-45)
The solution to this equation, for a given M, yields two values for cos(¢), thus rearranging and taking

the square root of both sides:

cos(p) = +V 1 = Mz? (3-46)
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The solution with the negative sign is chosen since the ML contour exists for some range of phase

angles between ~270° and —90° on the NC, in which cos(¢) is negative:
cos(9) = —V 1 - My? (3-47)

Since cos(¢) =cos(—¢) taking the inverse cosine yields two solutions for ¢:
Q= +cos™! (-— 1-Mat ) (3-48)
The two solutions for ¢ bound the range of angles over which the ML contour exists on the NC once
reflected into the (-360°,0°) angle range by adding +k 360° where k is an integer. The inverse cosine
function in Mathematica, however, returns only one of these two solutions, an angle between 0° and
+180°, which is:
¢ = +cos ! (— 1—-M?n2 ) (3-49)

The angle range for which the M, contour exists, therefore, is:

OMmmn < ¢ S OMama (3-50)

Where:

OMp i = +COS ! (—V 1 - Mt )— 360° (3-51a)
OMmmae = —COS ' (—V 1-Ma ) (3-51b)

Equation (3-51b), which gives the phase angle of the right edge of the ML contour, is used to derive
an expression for the phase margin angle y associated with the ML contour. Using the fact that

¥= 180" + My may Where ~180° < @M, .. < —90° as seen in Fig, 2-10 on page 2-8:

¥ = 180° = cos™* (w/ 1-My ) (3-52)

Solving Eq. (3-52) for M and using the fact that ML =20 logio(Mm) yields an expression for the

ML contour associated with the phase margin stability specification y:

ML = 20logio ; (3-53)
V1-cos (y-180)
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Equations (3-52) and (3-53) are given as Eqs. (3-29) and (3-26) respectively in Sec. 3.12.1 which lists
the equations used by the CAD package to convert among the various stability specifications. The appli-
cation of Egs. (3-43) and (3-50) to plotting the stability bound is now discussed.

A template with the nominal point at a fixed NC angle, when tangent to the My, contour, can be tangent
at only one point on the outline of the template. Because the point of tangency is unknown a-priori, Eq.
(3-43) for M cannot be used directly to determine the position at which the template is tangent to the
ML contour. Equation (3-43) is used, however, to search for the point of tangency. The location of the
points of tangency on the template when tangent above and tangent below the My, contour are addressed
separately.

To locate the point of tangency above the ML contour, the entire outline of the template is searched.
The point on the template which requires the largest open loop gain to bring the template into contact with
the ML, contour is the point of tangency, as illustrated in Fig. 3-11. Note that any increase in open loop
gain causes the template to loose contact with the ML contour. The search routine, by applying Eq. (3-43)
around the outline of the template, locates this point of tangency by searching for the point which requires
the largest M to contact the M, contour.

Before the CAD package begins the search, the range of angles in Eq. (3-50) over which the ML
contour exists is calculated using Egs. (3-51a) and (3-51b). This range is used first to calculate the range
of angles over which the stability contour exists, and second, to eliminate from the search any portion of

the outline of the template which is to the right or left of the My, contour on the NC and therefore cannot

Template

~

Point of tangency M, contour

Nominal point ~

_/
Fig. 3-11 Upper point of tangency with stability bound
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come into contact with it by moving the template up or down. The range of angles occupied by the stability
contour is calculated as follows:
OSBrax = PMmmax — PTEMPLATEm, (3-54a)
PSBris = PMmmin — PTEMPLATE s (3-54b)

The angles QTEMPLAT ., and QTEMPLATE,,, are illustrated on the template shown in Fig. 3-12 and
the angles @SB, PSBra OMpymn a0d QM o, are illustrated on the NC in Fig, 3-13. The stability bound
is then plotted, beginning with an angle just less than @sp_,,, in two degree intervals, until the end of the
stability bound angle range s, is reached. A graphical illustration of the stability bound angle range
is shown in Fig. 3-13.

The maximum value of M is found by applying a binary search to each line segment of the template
outline, one at a time, and retaining the overall maximum value found. An 8 iteration binary search is
performed on each line segment by applying Eq. (3-43) at 8 test points along the segment. The final test
point of the 8 iteration binary search comes to within Y515 of the segment length of the true location of
the maximum M. An 8 iteration binary search was sclected so the search would come to within less than
one degree of the true location of the maximum M even for a template segment which traverses 360° of
the NC. The greater of the values of M obtained at the indexed endpoint of the segment and at the last
test point of the binary search is taken to be the maximum value for M over the entire segment. For more

information on binary search, see reference (28).

Mj contour  Nominal point

Mnom = 0
—t— *
/1N J N\
(pTEMPLATFlm QTEMPLATEM (pSBm (pMmmin (pMm max <pSBm-x
Prom=0
Fig. 3-12 Template quantities of interest Fig. 3-13 Stability bound range
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During the binary search, Eq. (3-43) is applied at test points on each template segment. The following
discussion illustrates the method by which this is done, using as an example the arbitrary test point
(¢, My) located on a template segment as shown in Fig. 3-14. Recall that the template is shifted such that
the nominal point is at (Onom Mnom) =(0,0) as shown in Fig. 3-14. It is the shifted template that is
available in memory when generating the stability bound. For a stability bound point at angle ¢sp on the
NC, see Fig. 3-15, the search iteration shifts the template such that the nominal point is located at
(¢sB. Msp,). The value Msp, is the NC magnitude to which the nominal must be shifted for the test point
to be in contact with the upper portion of the ML contour (see Fig. 3-15). The test point is shifted along
with the nominal point to (g1 + @sB, Mt + Msp)). The location to which the test point is shifted can then
be calculated by applying Eq. (3-43) with ¢ =@ +9sp. Two solutions are returned for the open loop
transmission magnitude M required at the test point to be in contact with the My, contour. The larger
solution for M is taken, where M = M+ Msg, since the template must be in contact with the upper portion
of the My. contour during this search. The location to which the nominal point must be shifted, the quantity
the scarch seeks to maximize. is then calculated from:

Msp, =M - M, (3-55)

/Template

M, contour
Test Point
M‘ ((Pl‘Ml)
Mn0m =0 -J. V
e
’ \ (9s8.Msp)  (@t9sp. Mi*Mgp )
Prom=0 @y
Fig. 3-14 Test point on template Fig. 3-15 Stability bound search test point on NC
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If the test point happens to be the point of tangency, having the maximum possible Msp, associated
with it, then Msg = Msp, is achieved and a stability bound point is plotted at (psg, MsB).

To locate the point of tangency at which the template is tangent to and below the ML contour, the
entire outline of the template is searched again. The point on the template which requires the lowest open
loop gain to bring the template into contact with the My, contour at that point is the point of tangency, as
illustrated in Fig, 3-16. The search routine, by applying Eq. (3-43) around the outline of the template,
locates this point of tangency by searching for the minimum value of M. The search routine is performed
using exactly the same procedure as that used to locate a point on the upper stability bound contour, except

that a minimum value of Msp, is determined.

3.14.2 Disturbance Bounds
Disturbance bound are plotted for each template, one for each off-diagonal MISO loop in row i of the
MISO loops for which the compensator is designed. By satisfying the disturbance bound on the NC the

open loop transmission Lj obeys the constraint at each template frequency:

Qii

Itij] = Id;! 1—'*_1:‘ < bjj for i#] (3-56)
where:
tki
d:=_S X 3-57
ij Z A (3-57)
k1

M, contour ____ m

Template __

Point of tangency

Nominal point ~

Fig. 3-16 Lower point of tangency with stability bound




The specifications and the plant uncertainty dictate the magnitude of the disturbance Id;;l. This upper

bound on the maximum disturbance magnitude for each plant case / in the set of J plants is given by:

(dijmax )t = 3 %‘:ﬂ (3-58)
k=i

The most extreme upper bound on Idjjl for all the J plant cases is then:

Wijlmax = [ (Mijlmax )} (3-59)
Based on Egs. (3-56) and (3-59) a lower bound is placed on 11 +L;|, i.e.:
11+ 2 il lgil (3-60)

b]}
By making the substitution L; =# as in Sec. 2.10.2, the above equation is transformed such that

bounds can be plotted on the inverse NC. Thus, Eq. (2-24) is repeated below:

m | _ bij
1+m| = Iqiil Idijmax

3-61)

Simplifying by using the symbol Mp to designate the inverse NC constant magnitude contour:

< Mp where Mp = — i (3-62)
Igii! Idijlmax

m
l+m

In generai, Mp is different for different plant cases since q; is different for different plant cases.

Equation (3-62) can be utilized to determine the disturbance bounds for m as shown in Fig. 3-17. Since

constant M contour, * > 1 template Mp contour, Mp < 1

/ e

AOdBA_______,__o 0dB
‘inverse’ template —
— T
v/ 0dB u 0dB

constant M contour, Mp<1 Mp, contour, Mp>1

Fig. 3-17 Standard Nichols chart Fig. 3-18 Inverse Nichols chart
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the disturbance bounds are desired for Lio then from this point forward the inverse NC is utilized whose
constant magnitude contour is referred to as the Mp contour.

Equation (3-62) is used to plot bounds on Li on the inverse NC as shown in Fig. 3-18. To accomplish
this task, an equation is derived which gives the location of the constant magnitude contour in dB on the
inverse NC for a specified phase angle of Lio and value of Mp (13). Based on the equation for the location
of the constant magnitude contour, a scarch is implemented to locate the template point on the outline of
the template for which the most extreme disturbance bound point results. The quantity Mp is re-evaluated
based on q;; for each temnlate point examined by the search routine. The search algorithm therefore takes

into account correlation between the right-hand-side and left-hand-side of Eq. (3-61) due to correlation
. 1
between @i and m=—=——.

The algorithm used to scarch the template outline when plotting disturbance bounds is identical to that
used used when plotting stability bounds. However, for a given point along the outline of the template, at
a given angle on the NC, a differcnt equation is used to determine the open loop transmission magnitude
required for the test point to be in contact with the Mp contour of the inverse NC.

The first equation derived gives the location of the constant magnitude contour in dB on the inverse
NC for a specified value of Mp and phase angle of m (13). The derivation begins with the requirement
o m;

m

‘ < Mp (3-63)
1+ m|

Taking the magnitude of the left-hand-side, with m = Miny eIPin yiclds:

Minv
V1+Min COS(Qinv) + jMinv SIN(Qji,v)

Mp =

— Mln\'
\/[ 1 + Minv COS(Qinv) ]2 + [ Minv Sin(Qiny) J°

(3-64)

Squaring both sides and multiplying both sides by the denominator yields:
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MB [ ( 1+ Miny cos(@inv) ) + ( Miny sin(@iny) )* | = My (3-65)
Multiplying out the left-hand-side, and substituting sin2(<p) + cosz(tp) =1 yields:

MB [ 1 +2 Miny cOS(@inv) + My sin*(9iny) | = M (3-66)
Subtracting Mz, from both sides and multiplying out terms yields a quadratic equation in Miny:

(Mb - 1) Méw + [ 2 Mb cos(®inv) ] Minv + Mb = 0 (3-67)

The solutions to the quadratic equation is now written as:

—2 cos(Pinv) MB £ V 4 cos’(@inv) Mb — 4 Mp (M — 1)

Minv
2(Mb-1)

) 200} — (1 — M2
_ C08(@ine) * Veos ((pxrzw) (1-Mp) (3-68)
(1-Mp)

Note, however, that this requirement applies to m=(giqii)_1, not to Lj = giqii. as desired. By making
the substitution M=Mi and ®=-0inv. the solution is now written to apply to gigi. where
gigii = Mc'®:

(1 - M)

M =
—cos(0) = V cos(9) - (1 — Mp)

(3-69)

Two cases are now considered: those for which Mp > 1, and those for which Mp < 1.

For the case of Mp <1, one solution to Eq. (3-69) exists for a template point at the NC phase angle
¢ corresponding to the NC magnitude required for the template point to coniact the Mp contc:.r which
runs across the NC. A disturbance bound generated using an Mp contour with Mp <1 is an open contour
running across the entire angle range of the NC. Choosing the positive sign in the denominator of Eq.

(3-69) results in a positive gain M, which is the desired solution:

(1 - M)

M =
—cos(Q) + v cos? (@) - (1 - Mp)

for Mp< 1 (3-70)
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For the case of Mp> 1, two solutions exist over a limited range of angles on the NC. this case is
analogous to the pair of solutions obtained when using Eq. (3-43) to plot stability bounds. The derivation
of the range of angles for which the solution exists is carried out using exactly the same steps used to
obtain the range for the ML contour, given by Egs. (3-50) and (3-51). The range derived for the Mp

contour is shown below:

Dz € ¢ < QPDs @3-7hH)
Where:
@D, = +c08™! (— Vi-M )— 360° (3-722)

ODmax = -cos! (— V1-Mp ) (3-72b)

A disturbance bound generated using an Mp contour, with Mp > 1, is a closed contour on the NC.

Both solutions of Eq. (3-69) for M exist provided the angle lies in the range of the Mp contour:

(1 - MD)
—cos() + v cos2(q)) -1 - Mp)

M= for Mp>1 (3-73)

The casc of Mp =1 is not considered, since a small value can be subtracted from Mp allowing it to

be handled as if Mp < 1.

3.14.3 Gamma Bounds
Gamma bounds are generated based on Eg. (3-74), one for each template, and one for each row of
MISO loops. other than the current row. yet to be designed (13). Recall that it is desired that the denomi-
nator of the etfective plant. to be calculated by applying the improved method, not become smaller than a
specificd minimum value despite plant uncertainty, ie.:
P+ ggi-v,1 2k G3-74)
Equation (3-74) is the requirement associated with row j of the MISO loops when gamma bounds on
Ly are generated. The consltraint this inequality places on the open loop transmission Li = giqii = M P s

iHustrated on the polar plots shown in Figs. 3-19 and 3-20. The polar plots illustrate vector addition of
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the quantities 1-y; and several L; vectors along with a circle of radius & centered at the origin. The circle
bounds the forbidden region which must not enclose the vector sum 1 + giqii — ;.

In Fig. 3-19, the case for which a closed gamma bound is generated, it can be seen that for a limited
range of phase angles @a<¢@<g@pb a range of unacceptable transmission magnitudes
Ma(p) < M < Mu(0) places the vector sum 1 —; + Me® inside the forbidden region. The corresponding
locus of L=Me® for which the circle of radius k is violated is enclosed by the closed gamma bound
on the NC in Fig. 3-21. An equation for Ma(9) and Ms(¢) is derived in this section (13).

In Fig. 3-20, the case for which a gamma bound exists across the NC, it can be seen that for a range
of unacceptable transmission magnitudes 0 <M < Mbp(p) at a given phase angle ¢ for which the vector
L=Mc® enters the forbidden region of the polar plot. For each phase angle ¢. the transmission r.agnitude

M must be large enough that the vector sum 1 —; + Me'® reaches outside the forbidden region on the polar
plot. For this case an open gamma bound exists on the NC shown in Fig. 3-22 bounding from above the

locus of unacceptable transmission magnitudes. An equation for Mp(¢) is derived in this section (13).

Fig. 3-19 Closed gamma bound vector sum Fig. 3-20 Open gamma bound vector sum
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The examples in Figs. 3-19 and 3-20 illustrate the process by which a gamma bound is generated for
a single plant transmission. This process is now extended to address the fact that a region of plant
uncertainty exists as defined by the template. Initially, it is assumed that gamma is fixed. The process of
computing gamma bounds is then generalized to account for the fact that gamma varies among the plant
cases.
Assuming for a moment that y; is fixed, the range limits of the transmission magnitude Ma(¢) and
Mbp(¢) are derived in terms of the transmission phase angle ¢ beginning with the inequality:
PE-y,+gigi ! 2 & (3-75)
The bound on giqi; exists where the inequality is about to be violated:
1=y +gqil =4k (3-76)
Substituting 1 -7y,=a;+jo2 and gigi= M yields:
It + joo + M [cos(@) + jsin(9)] | = & 3-77)
Taking the magnitude and squaring both sides:

2

[ca1+M cos(9))* + [a2 + M sin(@)]* = k (3-78)

Multiplying out the equation and collecting like terms in M yields the quadratic equation:

40dB

40dB

|

| /\_

? 0dB +

: . | 1 | -40 dB { } ;
-40dB -+— , , t ;. -360° -270°  -180°  -90° o

-360° =270° -180° -90° o
Fig. 3-21 Closed Gamma Bound on NC Fig. 3-22 Open Gamma Bound on NC
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M +2 [0 cos(@) + 02 sin(p)] M + (a? + a% ~ k2) =0 (3-79)
Solving the quadratic equation for M yields the range limits Ma(@) and My(¢):

Ma(@) = — [0 cos(Q) + 2 sin()]

- \/ [ct1 cos(®) + a2 sin(cp)]2 - (a% + a% - k2) (3-80a)

Mp(p) = = [a cos(p) + a2 sin(@)]

+V [0 cos(@) + a2 sin((p)]2 - (a% +aj~ k2) (3-80a)

Solutions exist for angles at which the discriminant is non-negative:

: 2 2 2_ 42
[atp cos() + az sin{Q)]” — (@) “+a2°-k) 20 (3-8
Since this transcendental equation cannot be solved for @, an iterative search is used to determine the
range for which solutions exist.

Refer to Fig. 3-23 during the following discussion. The vector L= Mei‘p, provided it has a sufficiently
large magnitude M > M, is tangent to the circle of radius k at point B when the angle between the vector

Mc*® and the radius vector drawn to point B is 90°. This fact is used by a binary search which searches

the outline of the circle of radius k to locate the point of tangency at point B. Once the point of tangency

Fig. 3-23 Closed gamma bound quantities of interest  Fig. 3-24 Open gamma bound quantities of interest

3-34




1s located, basic geometry is applied to calculate ¢1 and @2. The implementation of the binary search and
the method by which ¢, and ¢ are calculated are now discussed.
Let:
oy +joz = 1 -7 (3-82)
The coordinates of point A on the polar plot are:
Ax = oy (3-83a)
Ay = w2 (3-83b)
The polar angle of the vector OA is:
Y = arg( ay +ja2) (3-84)
Given a trial polar angle @, of the vector OB, the coordinates of B are computed:
By = kcos(dy) ' (3-85a)
By = ksin(®y) (3-85b)
The polar angle @1 of vector AB, the first angle needed to compute the angle range of the gamma
bound, is given by:

¢ = arg[ (Bx —Ax) +j(By—Ay) ] (3-86)

The angle @2, the second angle needed, is now computed from @; using basic geometry. The fact that
the sum of interior angles of a triangle is 180° yields the equation:

(W -D))+(p1)+ (180°-¥ + ¢1) = 180° (3-87)
where W, @1, pi1, and ¢1 are angles shown in Fig. 3-23. Solving for p1 yields the angle at B between the
radius vector OB and the open loop transmission veclor AB:

pL=DPr-01 (3-88)

This is the angle which is 90° when point B is a point of tangency. The binary search, using 15

iterations, locates the angle @, for which p1 = 90° to within 45.2713 degrees.
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Recognizing that the triangles AOC and AOB are similar triangles, the angles AOC and AOB are taken
1o be equal. Therefore ®» is computed directly without iteration:
O -V = Y-y (3-89)
Solving for @, yields:
O = 2W -y (3-90)
The coordinates of C are then computed:
Cx = kcos(d2) (3-91a)
Cy = ksin(d») (3-91b)
Followed by the angle ¢2:
¢2 = arg[ (Cx—Ax) +(Cy~Ay) ] (3-92)
The angles @1 and @2 are then shifted into the range (-360,0°) by adding integer multiples of
+360° as needed. The range is initially taken to be:
(QGria » PGrar ) = [ MIN(@1.02) . Max(91.92) ] (3-93)
The range of angles is then checked 1o be sure @G, — PG, < 180° as required by inspection for
any point outside the circle of radius & on the polar plot. If this inequality does not hold, then the angle
range should include the 0° (or the 360°) point; the order of the angle limits are reversed. The reversal is
corrected by adding 360° to what is improperly taken to be the minimum angle in the angle range, making
it the mnaximum angle and including 0° in the angle range:
(OGrias PGrae ) = [ MaX(91,92) , Min(Q1,92+360° ] (3-99
Using Egs. (3-80a) and (3-80b) along with the algorithm for determining ¢G,;, and ¢g,,,. the mecha-
nism now exists for plotting the gamma bound on the NC using the existing template outline search routines.
When plotting a gamma bound on the NC the range of angles over which the gamma bound is plotted,
as shown in Fig. 3-26, is calculated analogous to the angle range of the stability bound:

OGBmax = PGaax ~ PTEMPLATEmin (3-95a)
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PGBuin = PGmin — PTEMPLATE g, (3-95b)
Let a test point on the outline of the template be located at (¢, My) and the template nominal located at
(0, 0), as shown in Fig. 3-25. When using the template to plot a point on the gamma bound, the template
must be shifted such that the nominal point is located at the angle @gp at which the point on the bound is
to be plotted. The test point, shifted along with the template, is shifted to the NC angle:
¢ = Q1+ QGB (3-96)
For the case of 11—yl >k two points are plotted on the gamma bound at each NC angle ¢gp at which
the gamma bound is plotted. Equations (3-80a) and (3-80b) are applied with ¢ =@+ @GB to determine
the limits My(¢) and Mu(p) on the transmission magnitude M at the test point. These limits are then related
back to the nominal point:
Mg, = M-M (3-97)
The most restrictive limits on the nominal open loop transmission magnitude, the NC magnitudes at
which the points on the gamma bound are plotted at ¢ = @, are found by searching the template outline
for the test points which result in the most restrictive values of Mgg,. Using this procedure, the gamma

bound is plotted on the NC across the range of angles for which it exists.

40dB
Test Point
Miom=0+
/ B, B,
\ -40 dB - i }
Prom= 0 ? -3600 -270°  -180°  -90° o
OTEMPLATE,, PTEMPLATE
Fig. 3-25 Test point on template Fig. 3-26 Gamma bound angle range
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An additional consideration which must be taken into account is the fact that a different gamma exists
for each plant case. This variation is handled by the CAD package by generating a gamma bound for each
value of ;, one for each of the J plant cases. The value of v; is held constant when generating each gamma
bound. A composite bound is then formed from the set of J gamma bounds. The composite gamma bound
is plotted on the NC in place of the J] gamma bounds from which it was formed. The method by which

a composite bound is formed is covered in Sec. 3.14.5.

3.14.4 Tracking Bounds

Tracking bounds are plotted across the NC using a procedure much different from those used to plot
the stability, disturbance, and gamma bounds. Tracking bounds are used to insure that the variation in
closed loop transmission t;; of the diagonal MISO loop does not exceed the variation SR permitted by the
performance specifications. The variation in the closed loop transmission results from both uncertainty in

the response due to tracking and from the presence of the disturbance input:
ti = I + g, (3-98)
where t,, and tg; arc given by Eqgs. (2-10a) and (2-10b).

As discussed in Sec. 2.10.2, a portion of the permitted variation r of the total response ;i is allocated
to the transmission due to disturbance tg, resulting in a reduced range of variation dr” for the transmission
duc to tracking t,. By allocating the portion 2 74, to disturbance, the permitted variation in closed loop
transmission t;, becomes A7y, as shown by Fig. 2-17 and by the equation:

Aty = AT - 274, 3-99

Once a portion of ATy, has been allocated to distuibance, the following specifications given in Sec.
2.10.2 must be met by the transmissions t;, and tq; of the diagonal MISO loop, respectively:

a < It < by (3-100)

M, | < 74, (3-101)

3-38




The portion 2 74, allocated to disturbance must now be determined. The normal procedure has been
to pick a trial value of 74,, say 10% of the total permitted variation Arg. If for that value it is determined
that adequate allocation is made for disturbance, that is, the specifications in Egs. (3-100) and (3-101) are
met at =i, then the value T4, is maintained fixed as the tracking bound is plotted across a range of
angles on the NC. Often, the same value of 74, is used at all w; for which performance bounds are plotted
on the NC. In the MIMO/QFT CAD package, however, a unique optimized value of 74, is used at ¢ach

phase angle on the NC and at each j_for which a point on the tracking bound is plotted (13).

The CAD package optimizes Tq; such that the restrictions on L; due to Egs. (3-100) and (3-101) arc
minimized. Based on the specification of Eq. (3-101) Eq. (3-60) is rewritten with i=j and bjj=14, tO

obtain the disturbance requirement on L for © = wi:

111»1,,12"’—“i“l““'—“"il (3-102)
Irg,|
Based on the specification of Eq. (3-100) the tracking requirement on L is written:
Lm(TRu,) — Lm(TR,,) < SR’ (3-103)

where 8r’=Lm(Ar,") =Lm(A7-274;) and where Tr,., and TRy, are determined by maximizing and

minimizing the transmission with unity gain prefilter Tr over the outline of the template:

Li
Tk = 3-104
R \ 1+L; | ( )

with the template placed on the NC with the nominal point at the location of the nominal open loop
transmission Lio at G = wi.

The restrictions of Egs. (3-102) and (3-103), which are functions of the choice of T4, are competing
restrictions. As 74, is decreased (increased), Eq. (3-102) becomes more (less) restrictive while Eq. (3-103)
becomes less (more) restrictive. Therefore, by choosing 74, such that Eqs. (3-102) and (3-103) place equally

restrictive limits on Lj, le., QI),,Gax,m):QRﬁ(jmg,(p)éI_B_Oii(jw;.(p) th rall iction due t h Egs.

3-39




(3-102) and (3-103) acting together is minimized, In general, the value of 74; is unique at each phase angle
and at each w; for which tracking bounds are plotted. A disturbance bound is not plotted on the NC for
the diagonal MISO loop since the disturbance and tracking bounds are evaluated, using this procedure, to
be identical. The procedure for determining the optimal 2 74; is now discussed.

In order to allocate for disturbance, a value for 74; is required. The CAD package determines 74,
indirectly, by first determining an allocation factor AF, which is the ratio of the range of variation allocated

to disturbance 2 74, to the total range of variation ATy, = bii — aii. AF is therefore defined as:

2 7g, <
AF = . (3-105)
bii ~ aii

Once a value for AF has been determined, 74; is calculated:

T4, = %AF ATy, (3-106)
The required portion of A7y, can now be allocated to disturbance. yielding:

Ary = AT, - 274, (2-107)
Expressed in decibels:

8k’ = Lm( A7) (3-108)

Once & is determined, the location of a tracking bound (TB) point on the NC can be determined.
The template 18 placed on the NC such that the nominal point is at the NC phase angle ¢ at which the
point on the tracking bound is to be plotted. The template is then shifted up or down as needed such that
the required SR is obtained:

OR" = Lm( TRy, ) — Lm( TRy, ) (3-109)

where TR is the closed loop transmission with unity gain prefilter:

Tr =

3-110)
1+Lil (
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The Icration of the nominal template point when Eq. (3-109) is satisfied is a point on the tracking

bound.

AF is optimized such that, when the open loop transmission at oy is in contact with the tracking bound
point plotted for wj, the largest expected Itg,l is equal io the amount 74, set aside for disturbance. For the
optimized AF, denoted AFop:, just the required portion of ATy, has been set aside for disturbance, no more,
no less. When AF = AFop, Egs. (3-102) and (3-103) are both satisfied as equalities, as desired. The
optimized value of AF is valid only at a specific «y and for a tracking bound (TB) point at a specific phase
angle @ on the NC. The iterative method by which the MIMO/QFT CAD package determines AFop: is
now discussed, as it applies 1o the plotting of a TB point for w=; at the phase angle ¢y on the NC.

Step 1: The iterative procedure begins with an assumed initial value for AF. The optimized value
AFop obtained for the last ploited TB point is used as the estimate AF of AFopt for the first search iteration
performed for each TB point.

Sigp 2: ATy and 3R’ are computed based on the estimate AF:

ATy = (1-AF)(bii-aii) G-111)
O’ = Lm( Aty) (3-112)

Step 3. Using the template for @w=w; a gradient search routine, with step size control, is used to
determine the NC magnitude Mg the template nominal point must be shifted to on the NC at phase angle
©rg such that the uncertainty in closed loop transmission is equal to 8’ in dB. The complex open loop
transmission at the TB point is then:

Li = gqi=Mrpe®™ (3-113)

For the open loop transmission in Eq. (3-113) the condition of Eq. (3-103) is satisfied as an equality.
The gradient search method used to determine Mtg is discussed in detail later in this section.

Step 4: The complex transmission of the compensator g; required for the open loop gain to be at the

point (¢, M) on the NC is calculated:
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jors

= M (3_1]4)
qii

:p 5 From Eq. (2-26) It lmax at ® = w;i can be determined based on the compensator g; value of

Eq. (3-114), from step 4, by applying a binary search to the line segments of the template outline using

the equation:

(3-115)

Ita,l = l Idiilmax Qii’
1+ g qii

where qi; is the complex transmission of the effective plant associated with each test point examined on the
tcmplate outline by the binary search. The search used to determine itg,lmax is avoided by recognizing that
TRoe € Egs. (3-109) and (3-110), is available as an intermediate result of the search used in step 3.

Ita,lmax is then calculated:

Id;ilm.
Itdu'mfl\ = (MJTRma‘ (3'116)
L lgil
where
TRm:n = ’ Ll ’ —g& (3‘117)
1+Ll|max l+g‘ q“ max
and from Eq. (2-19) the maximum value of Id;! for each plant case [ is:
bk |
(diilnax )t = I Z K (3-118)

Igikl: I
k=i |

The value Idiilmax required to calculate Itg;lmax using Eq. (3-116) is then obtained by maximizing Eq.
(3-118) over the J plant cases:
Idiilmax = [ (diilmax)i hyax overs - (3-119)
Step 6: The CAD package utilizes the value of Tr,,, in Eq. (3-117) and Itg Jmax In Eq. (3-119) to
determine if the trial allocation factor AF results in:
Ity lmax = 74, £ ATy, (3-120)

where ATd, 1s an acceptable error tolerance.
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If Eq. (3-120) is satisfied, then the requirement of Eq. (3-102) is satisfied as an equality when the right
hand side, maximized over the template outline, is equal t0 Ita;lmax. This is seen by rearranging Eq. (3-102)
in the form of Eq. (3-115);

Idiilmax |(Iii' <

TSN Td; (3-121)
If the requirement of Eq. (3-121) is satisfied, then the estimate AF has converged to the optimal
allocation factor AFopt and the iterative procedure terminates. If the requirement of Eq. (3-121) is not
satisfied, then the estimate AF is revised and the iterative procedure repeated, beginning with step 2. The
following additional steps ure performed to revise AF.
Step 7: The allocation factor AFreq required to accommodate td;lmax. determined in step S, is calcu-

lated:

2 1tg.]
AFrq = 2 tgy/max (3-122)
bii — ajj .

Step & The ditterence between AFreq and AF is computed as a measure of the error (deviation from

optimal) in the trial value AF:
AFer = AF = AFreq (3-123)

By examining Eqgs. (3-105) and (3-122) it is seen that the error term A ¢F is zero when
Itd,lmav = 74;. By revising AF such that AFerr is made much smaller (hopefully zero) during the next
iteration, the goal Itg;hmax = 7d; will eventually be achieved. The CAD package uses a gradient step to
make this revision. To implement the gradient step, the slope of AFer as a function of AF is determined.
To compute the slope, values AFerr, and AFerr, comesponding to two closely spaced trial values AF) and
AF» are requircd. The slope is then computed and the gradient step used to revise AF. The following
additional steps describe how the gradient step is implemented:

Step 9: AF and AFerr from steps 2 to 6 are used as AFerr, and AF;:

AF, = AF (3-124)
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AFern, = AFen (3-125)
Step 10: A value for AFs is computed by adding a small increment to AF:

AF; = AF +0.02 (3-126)
Step 11: Steps 2 through 8 are repeated with KF = AF, to obtain AFerr, = AFen.
Step 12: The slope of AFerr as a function of AF is computed:

8 AFerr . A-Ferrl - AFerrz
3AF © AF - AR (3-127)

tep 13: The gradient step is taken to compute the revised AF:

-1
AF = KF; + (0 — AFerr,) {Q%] (3-128)

For robustness, a step size control is used for the gradient step which is identical to that used for the
scarch implemented for determining Mt in step 3. The step size control is discussed later in this section.
Step 14: The iterative procedure is executed again beginning with step 2 using the revised AF.

The iterative method, which is implemented based on the steps outlined above, returns the optimized
AF and the associated MTp obtained in step 3, which is the location of the point on tne tracking bound at
angle ¢y for AF=AFop on the NC. The entire iterative procedure is again applied when plotting the
next point along the tracking bound on the NC, using AFopt from the previous TB point as the initial
estimate in step 1 of the search procedure. Because the optimal AF often does not change much between
points for a tracking bound plotted at 2° or 5° increments using AFopt of the previous bound point_as the
initial AF. reduces the number of iterations required for AF to converge to AFopi. By repeating the iterative
procedure for the range of angles of the NC, the complete tracking bound is generated.

For stcp 3. a gradient search enhanced by step size control is used to determine Mt for a given R’
and = To determine Mtp the template is placed on the NC and moved up or down as needed such
that the uncertainty of the closed loop transmission magnitude exactly matches dr’, i.e. Eq. (3-109) is

satisfied. With the template nominal point placed at (@3, MTB,), where Mrp, is a trial value of the NC

3-44




magnitude, the actual uncentainty in the closed loop transmission magnitude & is determined by searching
the template outline for the maximum closed loop transmission magnitude Tr,,, and the minimum closed
loop transmission magnitude TRr,;,. The values of Tr,, or Tr,,, are determined by using a binary search
to find the minimum or maximum magnitude respectively of the closed loop transmission Tr for each line
segment of the template outline using Eq. (3-110) at each point along the segment examined by the search.
The overall minimum or maximum transmission is then Tr,;, or TR, respectively.
The value of & in dB for the trial template position is then calculated:
& = Lm(TRpa) — L(TRpin) (3-129)
By ecvaluating &; at two closcly spaced values of Mtg, on the NC, a gradient of & as a function of

M, near the trial template position is estimated as follows:

B b=y
oMrB,  MTB,, —~ MTB,,

(3-130)

where &, and &. arc the uncertainties in closed loop transmission for the
template placed with the nominal point located at (MTB, ,.¢1p) and (MTB, @) respectively and where
Mg, , and Mrp,  are scparated by a small distance AM:

Mr1g,. = Mt ; +AM (3-13h)

An estimate of the value of Mt at which 8 =38gr’ is then calculated:

% Y
IOITB = MTB,; + (5R—5g,) (m} (3-132)

where Mrg, = (1011’8)._1 is the estimate of Mt from the previous search iteration.
The excursion ARITp from the previous estimate (IOITP,)R_, is then calculated:
Aftre = Qi — (M1B),., (3-133)
If Kitp is within the acceptable range (IOITB)‘_, + AMTB,,,. imposed by the step size control of the

previous estimate (IOITB),_,. 8¢ is determined at the test point Mrg, = Pire. If Kits is outside the acceptable
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range, i.. IAI%‘BI >AMrB,,., the excursion from (IOITB)i_, to the test point Mg, where & is determined
is made only to the limit of the acceptable step size range:

Mrp, = (MrB)._, + AMTB,,,  for AMrBE >0 (3-134a)

Mrs, = (MI1B),, - AMTB,,,  for ARrp <0 (3-134b)

The step size control therefore imposes a hard limit on the size of each step of the search procedure

to prevent jumping too far from the region in which the gradient of Eq. (3-127) is valid. If the value of

& for the test point Mrg, is closer to SR’ than that obtained using the previous best estimate (1011‘3)‘_,,

Mg, is accepted as the current best estimate:

(ﬁlTB);—l (MTB)i (3-135a)

(101TB);

Mrtp, (3-135b)

If the difference between § and SR’ is within an acceptable tolcrance, the search terminates. Otherwise,
another search iteration is performed, with a reduced step size limit AMrp_,, imposed. The search is
continued until successful or untii aborted.

The search is aborted if more than a preset number of search iterations are executed without converging
to the desired solution for Mg at which & =0Rr’, or if the size of the gradient step exceeds the step size
limit AM1g_,. by a factor greater than 100. A large gradient step results when the search becomes trapped
at a local minimum or at a local maximum where the gradient is small. The inverse of the gradient used
in Eq. (3-100) then becomes large, as does the distance from (I<>IT-B)i to the estimate Mrp. When the search
is aborted, when trapped in a local maximum or minimum, the gradient search must be restarted from a
new test point. A suitable test point is found by evaluating &: based on gradually increasing the value of
Kirp from the value (IOITB), at which the search had become trapped until a value of PirB is found for
which & overshoots the goal 8g’. Several "step-back" iterations are then performed to reduce the amount
of overshoot while maintaining the overshoot condition. Then, for either abort condition, the step size limit

AMTB,,. is Teset 1o an initial value, and the search begun again.
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The CAD program begins plotting the tracking bound at the 0° axis by calling a binary search subroutine
with a large search range to obtain a rough initial estimate for Mg to be used by the gradient search
procedure. The gradient search procedure is then used to obtain a refined solution for Mrs, which is then
plotted as a bound point on the NC. The gradient search is used, with the previous MTB as an initial
estimate, to find Mt at each successive angle on the NC. A list of the Mrp values and associated NC
phase angles is retained in memory to be plotted on the NC during loop shaping.

The gradient search method for plotting tracking bounds was previously implemented for generating
tracking bounds in a thesis by Sandra Cole (9). An alternative approach to the gradieni search is to develop
an equation which can be used to directly calculate the NC magnitude to which the template must be shifted
for a given 8R’. Direct calculation does not eliminate the need for search routines, however, because the
equation for the NC magnitude requires the template points at which the minimum and maximum trans-
missions occur, TR, and TRy, respectively, be known. These points are not known a-priori and therefore
must be located using a search routine. Furthermore, the location of Tr,,, and TR, on the template outline
change when the template is moved to a new position on the NC, requiring an iterative process be used to
locate the final NC magnitude to which the template must be shifted. Direct calculation was implemented
by Yaniv (22) to plot tracking bounds. The gradient search method was chosen due to its association with
the graphical method of locating tracking bounds presented in (17) and (11) and used in previous AFIT

thesis work.

3.14.5 Composite Bounds

A set of composite bounds is formed based on any or all of the tracking, stability, disturbance, and
gamma bounds. The composite bound for a given frequency is formed by retaining the most restrictive
portion of the bounds for the given frequency from which the composite bound is formed. The procedure
used to generate the composite bound hides the line segment of any bound whose endpoints lie entirely
within the forbidden regions of other bounds. For a tracking bound, which is a single contour running

across the NC, the forbidden region is the area on the NC below this bound. Thus the tracking bound is
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classified as an "upper bound", as shown in Fig. 3-27. A stability bound is classified as a "closed bound”,
as shown in Fig. 3-27, in the context of this discussion since it encloses a forbidden region on the NC.
Disturbance and gamma bounds are likewise classified using the above criteria.

As a first step in forming a composite bound, the bounds from which the composite bound is formed
are placed in a list. The bounds, as stored in this list, may have one of two possible structures, depending
on the classification of the bound. Each upper bound is represented in the form of a list, sorted by angle,
of angle-magnitude coordinate pairs at which upper bound points are plotted over the range of angles
(=360r,0°):

Dl oL Mag b {02, Munsh « v vy {0 Mu, | (3-136)

Each closed bound is represented in the form of a list, sorted by angle, with one entry for each angle
at which bound points are plotted on the NC. Each entry contains the angle ¢ at which the closed bound
points are plotted, as well as the upper limit My and lower limit Mg of the forbidden region at that angle.
The structure used to represent the closed bound is:

{01 Meu, Many b {92, Mews Ma,f, + . ., { @y Moy, Moy, |} (3-137)

In this form, a pair of bounds is compared and all hidden points identified in linear time. A point on

a bound is marked as hidden if it lies in the forbidden region of any other bound (see Fig. 3-28). For

. Composite bound X
Closed bound \ points at | ¢; , My, . Mdi }

X

Upper bound

/

. Segments hidden
point at { ;. Muui }

Fig. 3-27 Pair of bounds on NC Fig. 3-28 Composite bound for bound pair
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example the points { ¢j, Muy } of the upper bound and the lower point of the closed bound point pair
L @i, Mcy;, My, | are hidden points as shown in Fig, 3-28. Each bound must therefore be compared with
every other bound in the list of bounds to identify the hidden points.
A separate structure is used to flag bound points as hidden. For an upper bound it has the structure
is:
{ {®1, Hu b {02 Hu ) - -+ . {0n, Huuy} } (3-138)
For a closed bound it has the structure is:
{ {01, Houp, Hat, ), {92, Hew, Het ]y .+« , {@n Hooo Hay} ) (3-139)
The flags Hyy,, Hey, and Hey; are logical variables indicating a point is hidden. When a flag is set to
"True"”, the bound point is displayed as part of the composite bound. When a flag is set to "False", the
point is hidden. All flags are initially set to "True" before comparing bounds, and are set to "False" as
hidden points are identified. Once a bound is compared with all other bounds, and the flags are set
accordingly, all line segments for which one or both endpoints are not marked as hidden are included in
the set of line segments used for the composite bound. For example in Fig. 3-28 only the upper point of
the closed bound at phase angle ¢; is not flagged as hidden. Therefore, the flags Hqy, and Hyy; are set to
"False" while the flag Hey, is set to "True".
Each bound. in turn, is compared with all other bounds and additional composite bound line segments
collected. The final collection of line segments becomes the composite boundary on the NC. A line
segment included on the composite bound may extend into a forbidden region, resulting in rough breaks

at the points of intersection. This is the price paid for the simplicity of this method of generating a composite

bound.

3.15 Compensator Design
The compensator is designed to satisfy design specifications for the entire row of MISO loops in which

the compensator is used. In the 33 set of MISO equivalents shown in Fig. 2-11, it is seen that the same
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compensator g; and effective plant gj; are shared by all MISO loops of a given row. This fact implies that
the same set of stability bounds may be used for all MISO loops of the row in which the compensator is
to be used. Since the nominal loop transmission Lio = gigiio_is the same for all MISO lcops in a given
W n r_al i i abjlity a i i a

disturbance bounds for the off-diagonal MISO loop, and gamma bounds may all be plotted together on the
NC, The nominal loop transmission Lic_is synthesized for an entire row of MISO loops based on the
stability, disturbance, tracking, and gamma bounds plotted together on the NC, Alternatively, a single
composite bound may be used in place of the individual bounds at each bound frequency. The use of
composite bounds may reduce by a factor of four or more the number of bounds displayed on the NC,
reducing the difticulty in keeping track of the bounds that apply at a given frequency.

The CAD package sets the starting open loop transmission function that is used to start the synthesis
(or loop shaping) process to Lio = Gijo SO that the compensator is initially taken to be gi=1. To assist in
this loop shaping the CAD package makes a Bode plot of Lo, a Nichols plot of Lj, with bounds, and a
factored form listing of the compensator gi available to the designer. On both plots, the bound frequencies
arc marked on the loop transmission using colored markers. On the NC, all bounds are plotted in color to
match the color of the markers on the loop transmission. The designer must be sure the colored markers
do not violate bounds of matching color. The Bode plot must be used to read off the frequencies associated
with the colored markers, since the colored markers are used in place of frequency labels on the plot of
Lio on the NC. The Bode plot_issalso useful for noting the frequency associated with features of interest
on loop transmission, since this information is not readily obtained from the plot of Lio on the NC. The
Bade plot thus allows better placement of poles and zeros when designing the compensator.

The designer is given the option of labeling Li, with numeric bound frequencies rather than with
colored markers. The designer .is also given the option to include numeric frequency labels along the
bounds plotted on the NC. Frequency labels are useful when the NC is to be displayed on a monochrome

monitor or when a hardcopy is generated on a postscript printer.
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Assuming qjjo is identified as Lio, the CAD package allows the designer to add, delete, or modify the
poles and zeros of Lic and gi. The poles and zeros of L;, associated with gijo cannot be modified and
remain fixed. After any change to the poles and zeros, the gain is automatically adjusted such that the
loop transmission is relatively unaffected at frequencies much less than that associated with the modified
pole or zero. This allows the designer to "bend" the loop transmission on the NC at successively higher
frequencies until an acceptable loop shape is obtained. In addition, the gain can be independently modified,
as needed, by the designer. An updated listing, in factored form, of the poles, zeros, and gain of
gi = Lio/Giio is displayed after any of these changes are made.

Both real and complex poles and zeros may be added to Li,. Complex poles and zeros are displayed
as a natural frequency and a zeta. The designer can add poles and zeros in the form displayed or as a
complex number. The natural frequency of a complex pole or zero relates directly 1o the location at which
the loop transmission bends, while the value of zeta determines how sharply the loop is bent. The rectan-
gular coordinates of a complex pole or zero do not relate this information directly. Therefore rectangular
coordinates are not used as the format in which complex poles and zeros are displayed.

The designer may terminate the loop shaping process by saving the compensator g = Lio/Giio used to
obtain Lio or may abort the design changes before returning to the CAD package menu system. If saved,
the ~ompensator can be further moditied by again executing the "Design Compensator” option. Once the
designer has obtained a satisfactory compensator design, and the design has been saved, the prefilter is
designed.

Alternatives exist to the approach used by the MIMO QFT/CAD package. Automatic loop shaping
routines were developed by Thompson (27), and loop gain-phase shaping routines based on the Bode
integral theorem were developed by Bailey (3). In addition, a method of optimizing the loop transmission
based on a cost function was developed by Yaniv (22). The approach used by the MIMO/QFT CAD

package, requiring the designer to choose the poles, zeros, and gain of the compensator, was chosen due
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to the simplicity of implementation. Nevertheless, the MIMO/QFT CAD package may be enhanced in the

future to include routines which automate the loop shaping process.

3.16 Prefilter Design

The proper design of the compensator gi of the loop transmission function Lio guarantees that the
variation in closed loop transmission due to uncertainty for the channel is acceptable, but does not guarantee
that the transmission is within the upper and lower tracking bound specifications aji” and b;i’. The prefilter
fij is therefore required to shift the closed loop MISO loop transmission ty, such that it satisfies the upper
and lower tracking bound specifications a;;” and by shown in Fig. 2-17 on page 2-19 over the range of
plant uncertainty. When using the CAD package, a set of filter bounds on the nominal Tr are generated
and plotted on the Bode plot, along with the nominal Tr where:

Li
1+L;

TR = (3-140)

The prefilter is then designed by adding, deleting or modifying the poles and zeros and by adjusting
the gain of the prefilter such that the nominal Tr satisfies the filter bounds. Figures 2-17 and Z-18 illustrate
Baode plots of the nominal closed loop transmission both before and after successful prefilter design.

Several steps are required to generate the filter bounds. First, since only aj; and bjj are available to
the prefilter design program a portion of the permitted range of variation of Tr is allocated to the disturbance
to obtain the values a;i” and by’ required to generate the prefilter bounds. The portion allocated to disturbance
is unique at each frequency at which a point on the prefilter bounds is plotted. With the compensator
design in hand, the maximum transmission due to disturbance ltd;lmax is determined from Tr,,, at each
template frequency w=w; based on g using the same procedure used in step 5 of the tracking bound
algorithm. Because the phase of t4, is unknown, the worst case is assumed; the maximum and minimum
limits on the range of variation of Tr must each be reduced by the magnitude of the disturbance. as
illustrated in Fig. 2-17 on page 2-19. The restricted tolerances become:

bii" = bii — Itd;Imax (3-141a)
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aii’ = aji + It Imar (3-141b)
Betore the filter bounds are generated, Tr,, and Tr,,,. the maximum and minimum values of ITg!
over the range of plant uncertainty, are obtained at each template frequency ;i (11:727). These quantities
are obtained at each wj by placing the template for w;i on the NC with the nominal point at the location of
w; on the loop transmission Lo = gigiio. The scarch subroutines used when generating the tracking bounds
arc then used to search the outline of the template for the maximum and minimum closed loop transmissions
TR, and Tr,,,. These values are used to restrict the permitted range of variation about the nominal Tr
by the amount of varnation in TR which occurs over the range of the template relative to the nominal
transmission. By restricting the bounds about the nomnal Tg, the single nominal Tg can be plotted rather
than requiring an array of J transmissions to be plotted. one for each plant case. It is easier to work with
a single transmission within a pair of bounds then to work with J transmissions within a pair of bounds.
The upper and lower filter bounds on the nominal Tr are (11:727):
Lo by’ ) — Lm( TR, ) (3-1429)
Loy ay' ) — Lm( TR, ) (3-142b)
The filter bounds are plotied on the Bode plot along with the nominal closed loop transmission Tr.
Note that these bounds, as computed, cover only the range of frequencies covered by the templates. The
CAD package is able to extend this frequency range one decade higher and one decade lower based on the
values of Tr,,, and Tr,,,, obtained by minimizing or maximizing ITR! over the plant cases and based on
the value Itd Imax Obtained by maximizing Ity | over the plant cases. Templates on the NC are not used to
compute these valucs since no templates are generated in the frequency range irto which the bounds are
to be extended. The assumption made here is that the loop transmission is far enough away from the
(-180°.0dB)} point such that the constant magnitude contours on the NC are fairly straight in the vicinity
of the template, if it had been generated. Little is gained by searching template segmer:s since the segment

endpoints contact the most extreme constant magnitude contours, if straight.
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Once the nominal Tr and the filter bounds are ploited on the Bode plat, the prefilter fj; =1t /TR is

designed using the same procedure for adding, deleting, and modifying poles and zeros and for modifying

the gain used to design the compensator g = Lio/qiic  Where tr, is the nominal MISO loop closed loop

transfer function tr;. Once the prefilter design is complete, the designer may e’ther save or abort changes

made to the prefilter. L ..

1e design is saved, the design process is rontinued on yet another row of MISO

loops. until all compensators and prefilters have been designed. The completed design can then be tested.

3.17 Flowchart of MIMO QFT/CAD Package

The development of the various phases of the MIMO QFT/CAD package are presented in previous

sections of this chapter. Figure 3-29 is a flowcl.art representing these various phases of the CAD package.
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3.18 Simulation

The CAD package provides two methods of validating that the completed MIMO design meets the
stability and performance specifications. The first method (25) allows the designer to validate that the
stability specifications have been satisfied in the frequency domain by ploiting on the NC an array of the
J open loop MISO loop transmissions (Li}=gi (qii); for a given row of MISO loops i for all plant cases
1=1,2,..,) along with the Mt contour (this is none in block 18 in Fig. 3-29). If no open loop transmission
violates the My, contour, then the stability specifications have been satisfied for row i of the MISQO loops
of Fig. 2-11 on page 2-11. Figure 4-29 on page 4-19 shows the array of open loop transmissions for the
first row of MISO loops in Amold’s thests.

The sccond method of validation allows the designer to validate that the performance specifications
placed on the closed loop system have been met by plotting an mxm array of Bode magnitude plots, one
Bode plot for cach transfer function in the mxm transfer function matrix T = {t;ji fer the closed loop system
(this is done in block 19 of Fig. 3-29). The set of closed loop transfer functions (ti;); for the J plant cases
I=1,2,...] are plotted on the (i.j) Bode plot along with the performance tolerances a; for i#j and
bjj for all i and j, as shown in Fig. 4-29 for the design of Amold’s thesis. Any violation of the performance
tolerances by the closed loop transmissions are evident by inspection of the Bode plots. The designer can
thus note the frequency and channel for which a violation occurs, madify the compensator and prefilter
designs, and re-evaluate the frequency response of the closed loop system until satisfied with the results.

The mxm matrix of closed loop transfer functions Ty for plant case ! used to generate the set of Bode
plots shown in Fig. 4-28 on page 4-18 is computed for each of the J plant cases I=1,2,...] using the
equation:

Ti= () = [1+ (PG (PeNGE (3-143)

Where | is the identity matrix, (Pe) is the mxm plant matrix for plant case /, G is the diagonal

compensator matrix, and F is the diagonal prefilter matrix. The mxm matrix T of transfer functions in s
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is evaluated by direct use of Eq. (3-143) were I, (Pe);, G, and F are mxm matrices of transfer functions
using the symbolic capability of Mathematica. For large systems where m>2 the transfer function
elements of T may be very high order. For this reason, the log magnitude of the transfer function elements
is evaluated at the complex frequency of each point plotted on the Bode plots by making the assignment
s—jw. High precision numbers must be used when T is calculated using Eq. (3-143) and to evaluate T as
$—jw to overcome the errors in computing the small difference of large numbers encountered when evalu-
ating the magnitude of high order polynomials in coefficient form. Using high precision allows a smooth,
continuous Bode magnitude plot to be generated rather than a jagged, noisy plot. Direct evaluation of T
as s—jm 1s used because it allows Bode magnitude plots to be generated for arbitrarily high order transfer
functions without the need to transform the high order transfer function elements of T to factored form as
required to use the Bode plot function.

To evaluate the performance of the design in the time domain (this is done in block 21 of Fig. 3-29),
with nonlincarities introduced, the completed design is exported to MATRIXx. The CAD package allows
the designer to store the plant models, compensator matrix, and prefilter matrix in the form of a MATRIXx
command file. The command file. when executed during a MATRIXx session, creates the plant models,
compensator matrix. and prefilter matrix in state space form. The designer may then create a System_Build
model, inserting nonlinear elements if desired, and perform the necessary simulations.

Several alternatives to MATRIXx exist for time domain simulation. Other CAD packages on which
simulation may be performed include Matlab (Fig. 411 Matlab Bode angle plot comparison), Control-C
(10), and EASYS (12). The packages Matlab, Control-C, EASY5, and MATRIXx all allow nonlinear
simulation to be carried out in an object-oriented environment. MATRIXx was chosen as the CAD package
to which the finished design is exported because previous QFT thesis work was done using MATRIXx.
The CAD package may be enhanced in the future to allow transfer of the completed design to Matlab,

Control-C, and EASYS.
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3.19 Summary

Chapter 3 discussed the implementation of the MIMO QFT/CAD package. Algorithms used for im-
plementing the CAD package are presented in detail, including the derivation of equations unique to the
MIMO QFT/CAD package software. The software as developed in this chapter is tested by redoing two

MIMO QFT designs done by prior thesis students. Results of this testing are presented in Chap. 4.
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4 Results
4.1 Introduction

This chapter is intended to provide validation of the validity of the MIMO QFT CAD package presented
in this thesis. This validation is accomplished by redoing two MIMO QFT designs done by two prior
AFIT'ENG M.S. thesis students. In accomplishing this validation the following points must be kept in
mind:

(1)  Prior AFIT MIMO QFT designs did not have available specially designed QFT CAD packages.

(2)  The control CAD packages available in the past did not have the degree of accuracy and the

CAD tools necessary to perform the required MIMO QFT mathematical manipulations.

As 1s shown in this chapter, the MIMO QFT CAD package developed in this thesis, which is designed
to be used on more powerful computers than were available in the past, provides the necessary degree of
accuracy and facilitates the QFT design of MIMO control systems.

Sections 4.2 and 4.3 provide a comparison of the designs accomplished by Amold (2) and Betzold (5),
respectively. Further, in conjunction with this comparison, the validation of the MIMO QFT CAD package
of this thesis is accomplished along with a demonstration of its increased degree of accuracy through a

re-design of the channel | compensator and prefilter from Arnold’s thesis.

4.2 Validation of Thesis Results of Philip Amold

In Philip Amold’s thesis (2), MIMO QFT theory was applied to the design of an analog fault tolerant
two channel {light control system for the AFTUF-16. It was desired that the aircraft performance and
stability conform to design specifications despite the possibility of any of six possible failure modes in any
of four tlight conditions. There were therefore 24 plant cases. The failure modes include the normal
aircraft and five combinations of control surface failures in which control authority to the failed surfacc
has been lost.

The pitch rate and roll rate of the normal aircraft were to be controlled using four control surfaces. A
4x2 weighting matrix, given in the thesis, was used to divide control authority of the two channels among

the four control surfaces. In addition, the transfer function elements of the 2x4 basic aircraft transfer




function matrix were given for each flight condition. Failure modes were modeled by setting to zero transfer
function elements associated with any failed surface. The 2x2 effective plant Pe for that mode was then
formed by utilizing a weighting matrix. A diagonal prefilter F and a diagonal compensator G were used
to control the system.

The validation process began by generating the set of 24 effective plants. The effective plants are
cach formed as in Amold’s thesis from the weighting matrix and basic aircraft transfer function matrices
associated with the 24 combinations of flight conditions and failure modes. The effective plant transfer
functions are listed in Appendix A. Next, the equivalent plant transfer functions for the MISO loops are
formed using the CAD package. Common factors are then cancelled using a ratio of 0.0001 as discussed
in Sec. 3.9. The equivalent plants obtained are listed in Appendix B.

Next, design specifications used for the design are defined. The 4 dB M, contour on the NC is used
as the stability specification for both the pitch rate and roll rate channels. The requirement
1 ~7,;+L2>0.05 isused to generate gamma bounds for Lio when g;j has been designed and Ljo is known
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as discussed in Sec. 3.14.3. The tolerances on pitch rate and roll rate responses in the frequency domain
are shown in Fig. 4-1. The QFT design process can now begin.

Template frequencies arc selected and entered into the CAD package based on those used by Amold
and based on resonances in the open loop system. Sets of templates for channels 1 and 2 are then generated,
one template in each set for each template frequency. Plant cases #10 and #22 are chosen as the nominal
plant of channels 1 and 2, respectively, as in Arnold’s thesis. The set of templates generated by the CAD
package for channels 1 and 2, with the nominal points emphasized, are illustrated in Figs. 4-2 and 4-3. A
comparison of the templates generated by the CAD package to those given in Amold’s thesis shown in
Figs. 4-4 through 4-9 reveal significant differences in the low frequency templates. These differences arise
for two reasons. First, errors occurred on the calculations used by Armold to form equivalent plants for
plant cases 14, 15, and 24. For these cases, the gains were incorrect. The second reason for the difference
is that the angle used to plot template points, as obtained from previous CAD packages, could be in error
by 360°. This is the reason for the 360° degree width of Arnold’s template for g22 at W= 4.0™%.c shown
in Fig. 4-8. That the template width is incorrect can be validated by inspection of the Bode plot generated
by the CAD package of the equivalent plant 22 shown in Fig. 4-10. This effect, which caused the 360°
errors. can be scen by comparing the correct Bode angle plot obtained from the newly developed CAD
package in Fig. 4-10 to the Bode angle plot obtained from MATLAB illustrated in Fig. 4-11. All plant
cases must converge to the same angle at high frequencies, but the result from MATLAB doecs not reveal
this. Only when the Bode angle is properly determined can the correct templ;nes be generated.

Once the sets of templates are available, bounds on the NC can be generated. Since channel 2 was
designed first by Amold thus it is also examined first in this comparison. Bounds generated by the CAD
package include stability bounds shown in Fig. 4-12, tracking bounds shown in Fig. 4-13, disturbance
bounds shown in Fig. 4-14, and gamma bounds shown in Fig. 415. Composite bounds, shown in Fig.
4-16, are then generated based on the stability, disturbance, and tracking bounds. It is seen by comparing

the composite bounds of Fig. 4-16 to those used by Amold, shown in Fig, 4-17, that the disturbance bounds
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dominate the composite bounds in both cases and that the disturbance bounds generated by the CAD package
are less restrictive. Keeping in mind items 1 and 2 of Sec. 4.1, Amold’s Bp,,(jo;) bounds compare tavorably

with those gencrated by the CAD package. The difference arises due to the manner in which the disturbance
bound on the loop transmission 1s computed.

In the CAD package the limit is implemented for the (i,j) MISO loop as:

I 1 +q||:-| l 2 |Qik‘ (4'1)
k=i

\ )max

bij

whereas in Amold’s thesis it is approximate, based on
I1+L1 = IL[ inthe low w range. resulting in a more restrictive bound. For Amold’s case. when
Lol >> 1. the expression for the second channel, used by the CAD package, simplifies to:

b1t g2
421,00 D21

fgaqaat 2

(4-2)

An additional discrepuncy exists between the bounds used by Arnold and those gencrated by the CAD
package. Amold used only stability bounds for w >2%d4... while the CAD package shows that tracking
and disturbance bounds exist for all template frequencies, The disturbance bounds for Lo, as W—x, never
drop off the NC for Amold’s case because the restriction on | 1+Lil, i.e...

I JRRES
D212 g

1+L2] 2 (4-3)

does nat continue 1o become less restrictive for high frequencies as w—><. This is truc because all terms by,
g>2. b2y, and g21 have an cxcess of poles over zeros of one, and therefore the magnitude of the right hand
side of Eq. (43) entire quantity reaches a constant value at high frequencies. A limit exists, therefore, as
1o how much less restrictive the disturbance bounds become as the frequency for which the bounds are
generated is increased. Control analysis considerations, however, permit the designer to disregard perform-
ance (tracking and disturbance) bounds at high frequencies since above some frequency wh only stability
bounds are of concern (16). Once this open loop transmission has decreased to less than -12 dB, the effect
of the open loop transmission on the time domain performance (transient response) of the closed loop

4-10




system is considered negligible. Therefore, the accepted practice is to consider only stability bounds for
wi > wh. The CAD package generates and displays all bounds to allow the designer to apply engineering
Judgment n choosing which performance bounds to consider when designing the compensator.

Another significant difference between the bounds used by Amold and those of the CAD package is
evident in the plciting of tracking bounds. Because Amnold used a manual technique to plot the tracking
tounds. he ¢ruld never have plotted the tracking bound at w=0.02 or at ©=0.08. Also, Amold could
not have plotted the tracking bounds at @w=28 orat w=20 properly because he did not allocate a portion
of & to disturbance before checking for the existence of a tracking bound.

The open loop transmission on the NC with compostte bounds (dominated by disturbance bounds) is
shown i Fig. 416, As ploited, the performance bounds have all been violated. Also shown is the open
loop ransntission with gamma bounds in Fig. 4-18. It is seen that the loop transmission does not violate
the gamma bounds for any of the bound frequencies. Accordingly, no right-half plane poles are introduced

when Amold applied the improved method for his channel 1 design. A Bode plot of the open loop
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transmission in Fig 4-19 shows a a 0 dB crossover frequency of 27 ad4.., which is about as high as
acceptable for an aircraft flight control problem. There is little the designer can do, therefore, in terms of
adding gain to satisfy the performance bounds on the NC. The bounds used for prefilter design are shown
in Fig. 4-20. The prefilter from Amold’s thesis satisfies the tolerances on the nominal closed loop trans-
mission up to 20 4/, where bji is -20 dB. Since this is less than -12 dB, the prefilter design is considered
good.

Amold next accomplished the design of channel 1 by applying the improved method. He recognized
that vy, <<1 for all plant cases resulted in the equivalent plant qiie being essentially equal to q11. The
bounds are therefore generated by the CAD package of this thesis using the q; plants. The stability,
tracking, and disturbance bounds are shown in Figs. 4-21, 4-22, and 4-23 respectively. Composite bounds,
shown in Fig. 4-24, are then formed based on the stability, tracking, and disturbance bounds. The composite
bounds of Fig. 4-24 are now compared to those given in Arnold’s thesis shown in Fig. 4-25. The composite

bounds of the CAD package as well as those given in Arnold’s thesis are dominated by disturbance bounds.
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The disturbance bounds on L, generated by the CAD package, while slightly more restrictive, are in good
agreement with those used by Amold. The CAD package does, however generate disturbance bounds for
all template frequencies while Arnold plotted disturbance bounds only for @=1™%.. and w=2d/,.
Applying engineering judgment, Amold chose to satisfy only stability bounds for frequencies greater than
2rd/... The open loop transmission shown on the NC with composite bounds generated by the CAD
package in Fig. 4-24 violates the performance bounds for frequencies greater than 1794 which are
dominated by the disturbance bounds. From the Bode plot of the loop transmission, Fig. 4-26, it is seen
that the frequency at which the loop transmission crosses the O dB axis is 17 @%.. This frequency is
below the highest tolerable crossover frequency for the aircraft flight control system of 30 @Y. (16). As
with the open loop of channel 2, the gain cannct be increased much further in an attempt 10 meet the
performance bounds without exceeding the highest tolerable crossover frequency. Amold therefore could
not have satisfied the disturbance bounds for frequencies above 1 ™9, if they had been plotted.

The Bode plot of the nominal closed loop transmission with upper and lower filter bounds shown in
Fig. 4-27 shows that the prefilter design satisfies the diagonal MISO loop performance specifications up
to the frequency 60 ™%, which is much larger than needed, except for the region around 0.08 ™. at
which the channel between a'ii and bji is pinched off. This violation must be tolerated for the same reason
that the violation in the disturbance bound violations must be tolerated: the gain cannot be increased without
limit.

The closed loop transfer function matrix is then formed based on the compensator and prefilter transfer
functions given in Arnold’s thesis and the effective plants formed from the basic plant models and weighting
matrix. Bode plots of the closed loop system response of the true MIMO system are plotted by the CAD
package and are shown in Fig. 4-28 along with the performance tolerances. The violations in the disturbance
bounds, in particular. manifest themselves in violation of the performance tolerances of the off-diagonal
closed loop transmissions. The violation of the tracking bound at 0.08 ™4 for channel 2 results in the

notch at 0.08 ™. in the closed loop response of the (1,1) transfer function. The plot of closed loop
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transfer function responses, therefore, is shown to be a useful tool for visualizing the consequences of
violating performance bounds on the NC during the design process.

The open loop transmissions of the 24 plant cases are plotied on the NC for channel 1 and channel 2
in Figs. 4-29 and 4-30, respectively, to verify that the compensator designs satisfy the stability specifications.
From the Nichols plots, it can be seen by inspection that for channels 1 and 2 nope of the open loop

transmissions violate the 4 dB ML contour on the Nichols plots of Figs. 4-29 and 4-30.
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4.3  Validation of Thesis Results of Robert Betzold

The implementation of the algorithms of the MIMO CAD package is also validated by comparing
results obtained by using the CAD package to those shown in Betzold’s thesis (5). In his thesis, Betzold
applied MIMO QFT theory by utilizing the improved method to design the analog channel controllers for
the C-135 aircraft. He also utilized diagonal prefilter and compensator matrices, F and G, respectively, for
his 2x2 effective plant. Bank angle and sideslip are the aircraft parameters to be controlled. Since there
is no sideslip command input, only one equivalent MISO and one SISO loop are considered in the thesis:
roll due to roll command and sideslip due to roll command as shown in Figs. 4-31 and 4-32, respectively.

Betzold provides the equivalent plant matrix Q for each of the three flight conditions considered in
his design. These plant matrices are manually entered into the CAD package. Effective plant matrices are
formed by working backwards from Q to Pe for the purpose of forming the closed loop system to illustrate
the performance of the controller in the frequency domain. The diagonal elements gj; of the matrix Q are
used directly to form the plant templates shown in Fig 4-33 for channel 1 and in Fig. 4-34 for channel 2.

Betzold began by designing the off-diagonal SISO loop of channel 2, see Fig. 4-32, to meet specifi-

cations on sideslip due to roll command. Plant case 2 is chosen as the nominal plant for channel 2 and is

Fig. 432 (2,1) SISO loop from Betzold’s thesis
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emphasized on the chart of templates shown in Fig. 4-34. For this channel, stability, disturbance, and
gamma bounds are generated by the CAD package as shown in Fig. 4-35, Fig. 4-36, and Fig. 4-37
respectively. Tracking bo;mds are not generated since there is no sideslip command. Next, a set of
composite bounds are generated by the CAD package based on the stability and disturbance bounds. The
open loop transmission plotted on the NC aloug with the composite bounds is shown in Fig. 4-38. The
plot shows that the open loop transmission of channel 2 easily satisfies all composite bounds generated by
the CAD package. Comparing the composite bounds generated by the CAD package to those from Betzold’s
thesis shown in Fig. 4-39, the bounds are seen to be in close agreement.

Since Betzold was using the improved method, the open loop transmission is also plotted on the NC
with the gamma bounds as shown in Fig. 4-37. The loop easily satisfies all gamma bounds. Accordingly,
no new right-halt plane poles are introduced into the equivalent plants formed by applying the improved
method. Next, a Bode plot of the open loop transmission is generated showing an acceptable O dB crossover

frequency of 20 ™. No prefilter is designed for this channel since there is no sideslip input.
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Next, Betzold designed the compensator and prefilter for channel 1. Betzold applied the improved

method to obtain a new set of equivalent plants q11, which are manually substituted for qi1 in the CAD
package. A plant not among the plant cases is chosen as the nominal plant. Therefore no plant point is
emphasized on the templates for the first channel shown iz Fig. 4-33. Once the templates are generated,
the bounds are formed. For the roil channel, channel 1, only stability and tracking bounds are generated,
and are shown in Figs. 4-40 and 4-41 respectively. No disturbance bounds are generated since there is no
sideslip command input for channel 2. It can also be seen that the tracking bound is significantly more
restrictive than those plotted by Betzold. The difference arises because Betzold did not allocate for dis-
turbance when plotting the tracking bound.

The open loop transmission and composite bounds are then plotted on the NC by the CAD package
as shown in Fig. 4-42. The open loop transmission violates every tracking bound on the NC. This contrasts
with the open loop and tracking bounds in Betzold’s thesis, shown in Fig. 4-43, which satisfies the tracking
bounds. When the tracking bounds generated by the CAD package do not take disturbance into account,
the tracking bounds as plotted on the NC in Fig. 4-44 are identical to those of Betzold’s thesis; none of
the bounds are violated by the open loop transmission. The consequences of not taking the effect of
disturbance into account is apparent when the closed loop system is formed and the Bode plat of ti; plotted.

The compensator for channel 1 is now re-designed to validate that the frequency domain performance
tolerances a1y and by are satisfied when the open loop transmission L, satisfies the bounds generated by
the CAD package. First, a Bode plot of the open loop transmission for channel 1 using thé compensator
given in Betzold's thesis is examined. From the Bode plot in Fig. 4-45, it is seen that the 0 dB crossover
frequency for the open loop is 1 ™44, More gain can be tolerated in channel 1 since this has a low cutoff
frequency. When the CAD package plots the nominal closed loop transmission with filter bounds based
on Betzold's compensator, shown in Fig. 4-46, the upper bound is below the lower bound. This is caused
by the fact that the allocated tracking bounds are all violated by the open loop transmission. Figure 4-46

implics. therefore. that no solution exists for the prefilter design problem using the compensator given in
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Betzold’s thesis. The closed loop system is then formed for each effective plant using the compensators
and prefilter given in the thesis. Bode plots are then generated for the transfer function elements of interest,
and are shown in Fig, 4-47 along with the performance tolerances. The frequency domain transmission of
the roll channel, channel 1, violates the design specifications.

The compensator and prefilter of channel 1 is re-designed based on the allocated tracking bounds
generated by the CAD package as an attempt to satisfy the requirements on the closed loop system. The
loop transmission, based on a re-designed compensator, is shown on the NC in Fig. 4-48. The re-designed

compensator transfer function is:

_ 2.03x10 (s + 1.6)
" (s+28+ 28.57)(s + 28~ j28.57)(s + 20 + j34.64)(s + 20 - j34.64)

g1 (4-9)

Next, the prefilter is re-designed based on the nominal closed loop transmission obtained when using
the new compensator. The Bode plot with filter bounds of the nominal closed loop transmission, when
using the re-designed prefilter, is shown in Fig. 4-49. The transfer function of the re-designed prefilter is:

1.35

= —= (4-10)
(s +0.45)(s + 3)

f1n

The closed loop system is then formed based on the re-designed compensator and prefilter of channel
1. A Bode plot of the transmission of the closed loop transfer function elements in Fig. 4-50 indicates that
the performance tolerances are satisfied up to 40 ™., violating aj; when the closed loop transmission is
negligible at -80 dB. Clearly the design now satisfies the performance requirements in the frequency range
of interest.

Finally, the open loop transmissions of the 3 plant cases are plotted on the NC for channel 1 and
channel 2 in Figs. 4-5]1 and 4-52, respectively, to verify that the compensator designs satisfy the stability
specifications. From the Nichols plots, it is seen by inspection that for channels 1 and 2 none of the open

loop transmissions violate the 3 dB ML contour on the Nichols plats of Figs. 4-51 and 4-52.
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4.4  Summary

This chapter has shown that the results obtained using the MIMO/QFT CAD software are in good
agreement with results obtained by Betzold and Amold in past thesis work. Cases where the results are
not in agreement occurred due to the increased accuracy of software CAD routines and due to the more
exact but more computationally intensive methods used by the CAD software. As noted in items 1 and 2
of Sec. 4.1, the accuracy of previous thesis work was limited by the absence of CAD software specialized
for QFT. From this exercise, the CAD software has demonstrated that it is a very useful tool which
overcomes these difficulties by reducing computational errors and the possibility of human error by auto-
mating the design process. The availability of this software should expedite the utilization of the QFT

technique by multivariable control system designers.

4-33




5 Chapter 5
5.1  Accomplishments

The efforts of this thesis have provided the following accomplishments:

e Provides for the menu driven automated MIMO QFT CAD package developed

¢ Provides for the automated loading of contractor plant matrix data

¢ Provides for the implementation of a symbolic weighting matrix for gain scheduling

e Provides for the implementation of generalized polynomial matrix inverse using arbitrary preci-
sion calculations

e Provides for the automatic generation of templates

¢ Provides for the automatic generation of stability, tracking, disturbance, and composite bounds

¢ Provides for the automatic allocation to disturbance during generation of tracking bound

e Provides the capability of generating gamma bounds for use with the improved method on a
2x2 system

¢ The implementation of the improved method for 2x2 MIMQO systems

e The implementation of compensator design procedure on the NC

e The implementation of prefilter design procedure on the Bode plot

¢ The implementation of frequency domain evaluation of closed loop system performance

e The implementation of frequency domain method to verify a satisfactory stability margin ex-

ists for the MISO equivalent loops

5.2  Conclusions
e A MIMO QFT CAD package is developed during during this thesis effort which is capable of
carrying a design from problem specifications and contractor plant models, through the design
process, to frequency domain evaluation of the closed loop compensated system.
e The QFT/MIMO CAD package implementation is judged successful based on agreement with

the results obtained from past MIMO QFT thesis work.




e The QFT/MIMO CAD package provides improved accuracy and eliminates potential sources

of error.

5.3  Recommended Areas of Further Study
The following areas of further study and improvement of this CAD package are recommended:

» Extending the package to handle discrete control problems

e The implementation of a generalized improved method for mxm MIMO systems

e The implementation of the Binet-Cauchy theorem

¢ The automation of weighting matrix tuning process

e The implementation of generalized test for diagonal dominance for any mxm problem

e The improvement in robustness of polynomial root solver

e Extending the method of generating gamma bounds to any mxm problem

e The implementation of an option allowing the designer to renumber plant outputs

* The implementation of automatic loop shaping routines

s The development of an automated algorithm for optimizing bjj specification of the off-diago-
nal MISO loops to reach equilibrium between the disturbance bounds and the tracking bounds
on the NC when the bjj specifications are not a-priori fixed

e The development of routines for time domain performance analysis of the closed loop system

¢ The addition of the option to export the finished design to Matlab and EASYS for simulation
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Appendix A - Philip Amold’s Design
Pe Matrix Transfer Functions From CAD Package

A.1.1 Plant Case 1

Plant Case: 1 Element: {1, 1}

Roots of Numerator Roots of Denominator

0

-0.01750859094
-0.1041

-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.4616997602
-0.6835

Factored form gain multiplier:

Plant Case: 1 Element: {1, 2}

Roots of Numerator

Factored form gain multiplier:

-0.
-0.
=0.
-0.
-0.
-0.

-1

.3633
07683 + 0.2065 T
07683 - 0.2065 I
1041
2741 + 1.909 1
2741 - 1.909 1
6835
3

-2.17555

.3633

.07683 + 0.2065 I
.07683 - 0.2065 I
.1041

L2741 + 1.909 1
.2741 - 1.909 1
.6835

.3

0

Roots of Denominator




Plant Case: 1 Element: {2, 1}

Roots of Numerator Roots of Denominator
0.3633
-0.07683 + 0.2065 1
-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.6835
-1.3

Factored form gain multiplier: 0

Plant Case: 1 Element: {2, 2}

Roots of Numerator Roots of Denominator
0.3633 0.3633
0 -0.07683 + 0.2065 I
~-0.07683 + 0.2065 1 -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041

-0.2236638493 + 1.029339632 I -0.2741 + 1.909 1
-0.2236638493 - 1.029339632 I -0.2741 - 1.909 1
-1.3 -0.6835

-1.3

Factored form gain multiplier: -5.549




A.1.2 Plant Case 2

Plant Case: 2 Element: {1,

Roots of Numerator

0

-0.01677417266
-0.1041

-0.2741 + 1.909 I
-0.2741 - 1.909 1
-0.4668627603
-0.6835

Factored form gain multiplier:

Plant Case: 2 Element: (1,

Roots of Numerator

.01822
-1041
L2741 + 1.909 1
.2741 - 1.909 1
.4568
.6835

Factored form gain multiplier:

1}

2}

Roots of Denominator

0.3633

-0.07683 + 0.2065 1
-0.07683 - 0.2065 I
-0.1041

-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.6835

-1.3

-1.05755

Roots of Denominator
.3633

.07683 + 0.2065 1
.07683 - 0.2065 I
.1041

.2741 + 1.909 1
.2741 - 1.909 I
.6835

.3

0.2795

A-3




Plant Case: 2 Element: {2, 1}
Roots of Numerator
0.3633
0
-0.07683 + 0.2065 1
-0.07683 - 0.2065 1
-0.3017 + 1.562 I
~0.3017 - 1.562 1
-1.3
F -~tored form gain multiplier:

+ Case: 2 Element: {2, 2}

Roots of Numerator

Roots of Denominator
0.3633
-0.07683 + 0.2065 1
-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.6835
-1.3
2.142

Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 1
~0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 1 -0.1041
-0.2.532565826 + 0.5546662645 1-0.2741 + 1.909 I
-0.2153285825 - 0.9546662645 1-0.2741 - 1.909 I
-1.3 -0.6835

-1.3
Facteored fcrm gain multiplier: -5.0135




A.1.3 Plant Case 3

Plant Case: 3 Element:

Roots of Numerator

-0.01786739384
-0.1041

-0.2741 + 1.909 I
-0.2741 - 1.809 I
-0.4592182832
-0.6835

Factored form gain multiplier:

Plant Case: 3 Element:

Roots of Numerator

-0.06537

-0.1041

-0.2589

-0.2741 + 1.808 I
-0.2741 - 1.909 I
-0.6835

Factored form gain multiplier:

Roots of Denominator

-1.

.3633
.07683 + 0.2065 I

.07683 - 0.2065 I
.1041
.2741 + 1.909 1
.2741 - 1.909 1
.6835
3

-2.205775

Roots of Denominator

-1.

.3633
.07683 + 0.2065 I
.07683 - 0.2065 I

.1041
.2741 + 1.909 1
.2741 - 1.909 1
.6835
3

-0.1209

A-5




Plant Case: 3 Element: {2, 1}

Roots of Numerator

0.2065 I
0.2065 I
.853 1
.853 1

0

Factored form gain multiplier:

Plant Case: 3 Element: (2, 2}

Roots of Numerator

0.3633

0

-0.07683 + 0.2065 I

-0.07683 - 0.2065 I
-0.2362887311 + 1.132993767 I
-0.2362887311 - 1.132993767 1
-1.3

Factored form gain multiplier:

Roots of Denominator

0.

.3633
.07683 + 0.2065 I
.07683 - 0.2065 I
.1041

.2741 + 1.909 1
L2741 - 1.909 1
.6835

.3

55975

Roots of Denominator

0.3633

-0.07683 + 0.2065 I
-0.07683 - 0.2065 1
-0.1041

-0.2741 + 1.909 I
-0.2741 - 1.909 1
-0.6835

-1.3

-3.31




A.1.4 Plant Case 4

Plant Case: 4 Element: {1, 1}

Roots of Numerator

0

-0.01750899094
-0.1041

-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.4616997602
-0.6835

Pactored form gain multiplier:

Plant Case: 4 Element: {1, 2}

Roots of Numerator
0

-0.0030059051506
-0.1041

-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.5865269321
-0.6835

Factored form gain multiplier:

Roots of Denominator

0.3633

-0.07683 + 0.2065 1
-0.07683 - 0.2065 1
-0.1041

-0.2741 + 1.909 I
-0.2741 - 1.909 I
-0.6835

-1.3

-1.087775

Roots of Denominator
.3633

.07683 + 0.2065 1
.07683 - 0.2065 1
.1041
L2741
.2741
.6835
.3

+ 1.909 1
1.909 1

0.1586




Plant Case: 4 Element: {2, 1}

Roots of Numerator

0.3633

0

-0.07683 + 0.2065 I

-0.07683 - 0.2065 1
-0.2816656426 + 1.444520055 I
-0.2816656426 -~ 1.444520055 1
-1.3

Factored form gain multiplier:

Plant Case: 4 Element: (2, 2}

Roots of Numerator

-0.07683 + 0.2065 I

~0.07683 - 0.2065 I
-0.2236638453 + 1.029339632 I
-0.2236638483 - 1.029339632 1
-1.3

Factored form gain multiplier:

Roots of Denominator
.3633

.07683 + 0.2065 I
.07683 - 0.2065 I
L1041

-0.2741 + 1.909 I
-0.2741 - 1.909 1
-0.6835

-1.3

2.70175

Roots of Denominator

0.3633

-0.07683 + 0.2065 I
-0.07683 - 0.2065 I
-0.1041

-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.6835

-1.3

-2.7745

A-8




A.1.5 Plant Case 5

Plant Case: 5 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.3633
-0.01750899094 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 1 -0.1041

-0.2741 - 1.909 1 -0.2741 + 1.909 1
-0.4616997602 -0.2741 - 1.909 1
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -1.087775

Plant Case- 5 Element: {1, 2}

Roots of Numerator Roots of Denominator
0 0.3633
-0.0271355588 -0.07683 + 0.2065 1
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 1 -0.1041

~0.2741 - 1.909 1 -0.2741 + 1.909 1
-0.4023613724 -0.2741 - 1.909 1
-0.6835 -0.6835

-1.3
Factored form gain multiplier: 0.4004




Plant Case: 5 Element: {2, 1}

Roots of Numerator Roots of Denominator
0.3633 0.3633
0 -0.07683 + 0.2065 1
-0.07683 + 0.2065 I -0.07683 - 0.2065 1
-0.07683 - 0.2065 I -0.1041

-0.3359094012 + 1.743875067 I -0.2741 + 1.909 I
-0.3359094012 - 1.743875067 I -0.2741 - 1.909 I
1.3 -0.6835

-1.3

Factored form gain multiplier: 1.58225

Plant Case: 5 Element: {2, 2}

Roots of Numerator Roots of Denominator
0.3633 0.3633
0 -0.07683 + 0.2065 I
-0.07683 + 0.2065 I -0.07683 - 0.2065 1
-0.07683 - 0.2065 1 -0.1041

-0.2236638493 + 1.029339632 I -0.2741 + 1.909 I
-0.2236638493 - 1.029339632 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: -2.7745

A-10




A.1.6 Plant Case 6

Plant Case: 6 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.3633

-0.01822 -0.07683 + 0.2065 1
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 1 -0.1041

-0.2741 - 1.909 1 -0.2741 + 1.909 1
-0.4568 -0.2741 - 1.909 1
-0.6835 -0.6835

-1.3

Factored form gain multipliexr: -2.236
Plant Case: 6 Element: {1, 2}

Roots of Numerator Roots of Denominator
0.3633
-0.07683 + 0.2065 1
-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.6835
-1.3

Factored form gain multiplier: O

A-11




Plant Case: 6 Element: {2, 1}

Roots of Numerator Roots of Denominator
0.3633
-0.07683 + 0.2065 I
-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 1
-0.2741 - 1.909 I
~0.6835
-1.3

Factored form gain multiplier: O

Plant Case: 6 Element: {2, 2}

Roots of Numerator Roots of Denominator
0.3633 0.3633

0 -0.07683 + 0.2065 1
-0.07683 + 0.2065 I -0.07683 - 0.2065 1
-0.07683 - 0.2065 I -0.1041

-0.3017 + 1.562 I -0.2741 + 1.909 1
-0.3017 - 1.562 1 -0.2741 - 1.909 1
-1.3 -0.6835

-1.3

Factored form gain multiplier: -1.071

A-12



A.1.7 Plant Case 7

Plant Case: 7 Element: {1, 1}

Roots of Numerator Roots of Denominator
0.07795 1.167

0 0.07795
-0.009939645444 -0.006472 + 0.07803 1
-0.211 + 1.953 1 -0.006472 - 0.07803 1
-0.211 - 1.953 1 -0.211 + 1.953 1
-0.5620045698 -0.211 - 1.953 1
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -5.91485
Plant Case: 7 Element: {1, 2}

Roots of Numerator Roots of Denominator

0.07795

-0.006472 + 0.07803 1
-0.006472 - 0.07803 I
-0.211 + 1.953 1
-0.211 - 1.853 1
-0.8265

-2.028

Factored form gain multiplier: O

A-13



Plant Case: 7 Element: {2, 1}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 7 Element: {2, 2}

Roots of Numerator

1.167

0

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.2231060935 + 1.697351372 1
-0.2231060935 - 1.697351372 I
-2.028

Factored form gain multiplier:

Roots of Denominator

.07785

.006472 + 0.07803 I
.006472 - 0.07803 I
.211 + 1.953 1

.211 - 1.953 1
.8265

.028

0

Roots of Denominator

.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 1
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

-20.842
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A.1.8 Plant Case 8

Plant Case: 8 Element: {1, 1}

Roots of Numerator
0.07795

0
-0.
-0.
-0.
-0.
-0.

009845163158
211 + 1.953 I
211 - 1.953 1
5735955769
8265

Factored form gain multiplier:

Plant Case: 8 Element: (1, 2}
Roots of Numerator
0.07795
0
-0.01004
-0.211 + 1.853 1
-0.211 - 1.853 1
-0.5502
-0.8265
Factored form gain multiplier:

Roots of Denominator

.07795

-0.006472 + 0.07803 1
-0.006472 - 0.07803 I
-0.211 + 1.853 1
-0.211 - 1.953 1
-0.8265

-2.028

-2.98395

Roots of Denominator

.07785

.006472 + 0.07803 1
.006472 - 0.07803 I
.211 + 1.953 1

.211 - 1.953 1
.8265

.028

0.73275
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Plant Case: 8 Element: (2,

Roots of Numerator

1.167

0

-0.006472 + 0.07803 I
-0.006472 - 0.07803 1
-0.2442 + 2.101 1
-0.2442 - 2.101 1
-2.028

Factored form gain multiplier: 6.

Plant Case: 8 Element:

Roots of Numerator

1}

Roots of Denominator

1.167

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 1
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

792

{2, 2}

Roots of Denominator

1.167 1.167
0 0.07795
-0.006472 + 0.07803 I -0.006472 + 0.07803 1
-0.006472 - 0.07803 I -0.006472 - 0.07803 1
-0.2212351442 + 1.656795028 I -0.211 + 1.953 I
-0.2212351442 - 1.656795028 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028
Factored form gain multiplier: -19.144
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A.1.9 Plant Case 9

Plant Case: 9 Element: {1, 1}

Roots of Numerator

-0.009989054852
=0.211 + 1.953 1
-0.211 - 1.953 1
-0.5561293643
-0.8265

Factored form gain multiplier:

Plant Case: 9 Element: (1, 2}

Roots of Numerator
0.07795

0

-0.006697

-0.211 + 1.953 I
-0.211 - 1.953 1
-0.8265

-1.861

Factored form gain multiplier:

Roots of Denominator

0.07795

-0.006472 + 0.07803 1
~0.006472 - 0.07803 1
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

-5.888475

Roots of Denominator

0.07795

-0.006472 + 0.07803 I
-0.006472 ~ 0.07803 1
-0.211 + 1.853 1
-0.211 - 1.853 1
-0.8265

-2.028

0.1059
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Plant Case: 9 Element: (2,

Roots of Numerator

-0.006472 + 0.07803 1
-0.006472 - 0.07803 I
-0.219 + 1.607 I
~0.2i9 - 1.607 I
-2.028

1}

Roots of Denominator

Factored form gain multiplier: 2.

Plant Case: 9 Element: {2,

Roots of Numerator

-0.006472 + 0.07803 1
-0.006472 - 0.07803 1I
-0.2260615727 + 1.759509227
-0.2260615727 - 1.759509227
-2.028

Factored form gain multiplier:

2}

.07795

.006472 + 0.07803 I
.006472 - 0.07803 I
.211 + 1.953 1

.211 - 1.953 1
.8265

.028

18075

Roots of Denominator

-0.
-0.
I -0.
I -0.
-0.
-2.

.07795

006472 + 0.07803 I
006472 - 0.07803 I
211 + 1.953 1

211 - 1.953 1

8265

028

-12.119
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A.1.10 Plant Case 10

Plant Case: 10 Element: {1,

Roots of Numerator

1}

Roots of Denominator

0.07795 1.167

0 0.07795
-0.009939645444 -0.006472 + 0.07803 1
-0.211 + 1.953 1 -0.006472 - 0.07803 I
-0.211 - 1.953 1 -0.211 + 1.953 1
-0.5620045698 -0.211 - 1.953 1
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -2.957475
Plant Case: 10 Element: (1, 2}

Rocots of Numerator
0.07795

0
-0.
-0.
-0.
-0.
-0.

C08933835362
211 + 1.953 1
211 1.953 1
716404473
8265

Factored form gain multiplier:

Roots of Denominator

.07795

.006472 + 0.07803 I
.006472 - 0.07803 I
.211 + 1.953 1

.211 - 1.953 1
.8265

.028

0.83865




Plant Case: 10 Element:

{2/

Roots of Numerator

1}

Roots of Denominator

1.167 1.167

0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 1
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2380753559 + 1.992266599 I -0.211 + 1.953 I
-0.2380753559 - 1.992266599 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: 8.97275

Plant Case: 10 Element: {2, 2}

Roots of Numerator

.006472 + 0.07803 I

.006472 - 0.07803 1
.2231060835 + 1.697351372 1
.2231060935 - 1.697351372 1
.028

Factored form gain multiplier:

Roots of Denominator

07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 I
-0.211 - 1.953 I
-0.8265

-2.028

-10.421
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A.1.11 Plant Case 11

Plant Case: 11 Element: {1, 1}

Roots of Numerator

-0.009939645444
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.5620045698
-0.8265

Factored form gain multiplier:

Roots of Denominator

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

-2.957475

Plant Case: 11 Element: {1, 2}

Roots of Numerator
0.07795
0
-0.01334841556
-0.211 + 1.953 1
-0.211 - 1.853 1
-0.3260098802
-0.8265

Factored form gain multiplier:

Roots of Denominator

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 1
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

0.62685
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Plant Case: 11 Element: {2, 1}

Roots of Numerator

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.2561175712 + 2.297831558 I
-0.2561175712 -~ 2.297831558 1
-2.028

Factored form gain multiplier:

Roots of Denominator

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 1
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

4.61125

Plant Case: 11 Element: {2, 2}

Roots of Numerator

-0.006472 + 0.07803 1
-0.006472 - 0.07803 I
-0.2231060935 + 1.657351372 I
-0.2231060935 - 1.697351372 1
-2.028

Factored form gain multiplier:

Roots of Denominator

....................

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 1
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-2.028

-10.421
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A.1.12 Plant Case 12

Plant Case: 12 Element: {1, 1}

Roots of Numerator
0.07795
0
-0.01004
-0.211 + 1.953 1
-0.211 - 1.853 1
-0.5502
-0.8265

Factored form gain multiplier:

-0

Roots of Denominator

.07795
-0.
-0.
-0.
-0.
.8265
-2.

006472 + 0.07803 I
006472 - 0.07803 1
211 + 1.953 1
211 - 1.853 1

028

-5.862

Plant Case: 12 Element: {1, 2}

Roots of Numerator

Factcred form gain multiplier:

0

Roots of Denominator

.07785

.006472 + 0.07803 1
.006472 - 0.07803 1
.211 + 1.953 1

.211 - 1.953 1
.8265

.028
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Plant Case: 12 Element:

Roots of Numerator

{2,

1}

Roots of Denominator

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.853 1
-0.211 - 1.953 1
-0.8265

-2.028

Factored form gain multiplier: O

Plant Case: 12 Element:

1.167

0

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I

-0.2442 + 2.101 I
-0.2442 - 2.101 1
-2.028

{2,

2}

Roots of Denominator

0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 1
-0.211 -~ 1.953 1
-0.8265

-2.028

Factored form gain multiplier: -3.396
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A.1.13 Plant Case 13

Plant Case: 13 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.9645
-0.01261453256 -0.007553 + 0.5384 1
-0.02719 -0.007553 - 0.5384 1
-0.391 + 2.962 I -0.02719

-0.391 - 2.962 1 -0.391 + 2.962 1
-1.518569941 -0.391 - 2.962 1
-2.697 -2.697

-3.223

Factored form gain multiplier: -25.678

Plant Case: 13 Element: {1, 2}

Roots of Numerator Roots of Denominator
0.9645
-0.007553 + 0.5384 I
-0.007553 - 0.5384 1
-0.02719
-0.391 + 2.962 1
-0.391 - 2.962 1
~-2.697
-3.223

Factored form gain multiplier: O
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Plant Case: 13 Element: {2,

Roots of Numerator

Factored form gain multiplier:

Plant Case: 13 Element: (2,

Roots of Numerator

0.9645

0

-0.007553 + 0.5384 I
-0.007553 - 0.5384 I
-0.3582378099 + 3.06754481 I
-0.3582378099 - 3.06754481 I
-3.223

Factored form gain multiplier:

1}

Roots of Denominator
.9645

.007553 + 0.5384 1T
.007553 - 0.5384 I
.02719

.391 + 2.962 1
.391 - 2.962 1
.697

.223

0

2}

Roots of Denominator
.9645

.007553 + 0.5384 1
.007553 - 0.5384 1
.02719

-0.391 + 2.962 I
-0.391 - 2.962 1
-2.657

-3.223

-63.74
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A.1.14 Plant Case 14

Plant Case: 14 Element: (1, 1}

Roots of Numerator Roots of Denominator
0 0.9645
-0.01260976464 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 1
-0.391 + 2.962 I -0.02719

-0.391 - 2.962 1 -0.391 + 2.962 I
-1.526123846 -0.391 - 2.962 1
-2.697 -2.697

-3.223

Factored form gain multiplier: -13.648

Plant Case: 14 Element: {1, 2}

Roots of Numerator Roots of Denominator
0 0.9645

-0.01262 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 1
-0.391 + 2.962 1 -0.02719

-0.391 - 2.962 1 -0.391 + 2.962 1
-1.51 -0.391 - 2.962 1
-2.697 -2.697

-3.223

Factored form gain multiplier: 3.0075
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Plant Case: 14 Element: {2, 1}
Roots of Numerator Roots of Denominator
0.9645 0.9645

0 -0.007553 + 0.5384 1
-0.007553 + 0.5384 1 -0.007553 - 0.5384 1
-0.007553 - 0.5384 1 -0.02719

-0.3749 + 3.578 1 -0.391 + 2.962 1
-0.3749 - 3.578 1 -0.391 - 2.962 1
-3.223 -2.697

-3.223
Factored form gain multiplier: 25.36
Plant Case: 14 Element: {2, 2}

Roots of Numerator

.007553 + 0.5384 1

.007553 - 0.5384 1
.3563574216 + 3.005846427 I
.3563974216 - 3.005846427 I
.223

Factored form gain multiplier:

Roots of Denominator
. 9645

.007553 + 0.5384 1
.007553 - 0.5384 1
.02719

-0.391 + 2.962 1
-0.391 - 2.962 1
-2.697

-3.223

-57.4
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A.1.15 Plant Case 15

Plant Case: 15 Element: {1,

Roots of Numerator

1}

Roots of Denominator

0 0.9645
-0.01261716956 -0.007553 + 0.5384 1
-0.02719 -0.007553 - 0.7384 I
-0.391 + 2.962 1 -0.02719
-0.391 - 2.962 1 -0.391 + 2.962 1
-1.514424371 -0.391 - 2.962 1
-2.697 -2.697

-3.223
Factored form gain multiplier: -24.869
Plant Case: 15 Element: {1, 2}

Roots of Numerator

.01254

.02719

.391 + 2.962 1
.3%1 - 2.962 1
.6486

.697

Factcred form gain multiplier:

Roots of Denominator
. 9645

.007553 + 0.5384 1
.007553 0.5384 1
.02719

.391 + 2.962 1
2391 - 2.962 1
.697

.223

3.236
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Plant Case: 15

Roots of Numerator

0.9645

0

-0.007553 + 0.5384 I
-0.007553 - 0.5384 1

-0.3541 + 2.927 1
-0.3541 - 2.927 1
-3.223

Factored form gain multiplier:
Plant Case: 15
Roots of Numerator

-0.007553 + 0.5384 1
-0.007553 - 0.5384 1
-0.3610024863 + 3.157962895 1
-0.3610024863 - 3.157962895 1
-3.223

Factored form gain multiplier:

Element: {2, 1}

Roots of Denominator
0.9645

-0.007553 + 0.5384 I
-0.007553 - 0.5384 I
-0.02719

-0.391 + 2.962 1
-0.391 - 2.962 I

-2.697

-3.223

6.3825

Element: {2, 2}

Roots of Denominator
0.9645

-0.007553 + 0.5384 I
-0.007553 ~ 0.5384 1
-0.02719

-0.391 + 2.962 1
-0.391 - 2.962 1
-2.697

-3.223

-38.21
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A.1.16 Plant Case 16

Plant Case: 16 Element: {1,

Roots of Numerator

1}

Roots of Denominator

0 0.9645
-0.01261453256 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 1
-0.391 + 2.962 1 -0.02719
-0.391 - 2.962 1 -0.391 4+ 2.962 1
-1.5185699-1 -0.391 - 2.962 1
-2.697 -2.697

-3.223
Factored form gain multiplier: -12.839
Plant Case: 16 Element: {1, 2}

Roots of Numerator

.01257680361
.02719

0381 + 2.962 1
.391 - 2.962 1
.580450401
.697

Factored form gain multiplier:

Roots of Denominator
.89645

.007553 + 0.5384 I
.007553 - 0.5384 I
.02719

2391 + 2,962 1
.391 - 2.962 1
.697

. 223

6.2435
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Plant Case: 16 Element: (2, 1}

Roots of Numerator Roots of Denominator
0.9645 0.9645
0 -0.007553 + 0.5384 1
-0.007553 + 0.5384 1 -0.007553 - 0.5384 1
-0.007553 - 0.5384 1 -0.02719

-0.3707177207 + 3.456973615 I -0.391 + 2.962 I
-0.3707177207 - 3.456973615 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: 31.7425

Plant Case: 16 Element: (2, 2}

Roots of Numerator Roocts of Denominator
0.9645 0.9645
0 -0.007553 + 0.5384 1
-0.007553 + 0.5384 1 -0.007553 - 0.5384 1
-0.007553 - 0.5384 1 -0.02719

-0.3582378099 + 3.06754481 I -0.391 + 2.962 1
-0.3582378089 - 3.06754481 I -0.391 - 2.862 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -31.87
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A.1.17 Plant Case 17

Plant Case: 17 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.9645
-0.01261453256 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 1
-0.391 + 2.962 1 -0.02719%

-0.391 - 2.%62 1 -0.391 + 2.962 1
-1.518569941 -0.391 - 2.962 1
-2.697 -2.697

-3.223

Factored form gain multiplier: -12.839

Plant Case: 17 Element: {1, 2}

Roots of Numerator Roots of Denominator
0 0.9645
-0.01207934527 -0.007553 + 0.5384 1
-0.0271¢ -0.007553 - 0.5384 I
-0.3%91 + 2.962 1 -0.02719

-0.361 - 2.962 1 -0.391 + 2.962 1
~2.697 -0.391 - 2.962 1
-3.435423579 -2.697

-3.223

Factcred form gain multiplier: -0.2285
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Plant Case: 17 Element: {2, 1}

Roots of Numerator Roots of Denominator
0.9645 0.9645
0 -0.007553 + 0.5384 1
-0.007553 + 0.5384 I -0.007553 - 0.5384 1
-0.007553 - 0.5384 1 -0.02719

-0.381895442 + 3.771752842 I -0.391 + 2.962 I
-0.381895442 - 3.771752842 1 -0.391 - 2.962 1
-3.223 -2.697

-3.223

Factored form gain multiplier: 18.9775

Plant Case: 17 Element: {2, 2}

Roots of Numerator Roots of Denominator
0.9645 0.9645
0 -0.007553 + 0.5384 1
-0.007553 + 0.5384 1 -0.007553 - 0.5384 1
-0.007553 - 0.5384 1 -0.02719%

-0.3582378099 + 3.06754481 I -0.391 + 2.962 1
-0.35823780938 - 3.06754481 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -31.87
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A.1.18 Plant Case 18

Plant Case: 18 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.9645

-0.01262 -0.007553 + 0.5384 I
-0.02719 -0.007553 -~ 0.5384 I
-0.391 + 2.962 1 -0.02719%

-0.391 - 2.962 1 -0.391 + 2.962 I
-1.51 -0.391 - 2.962 1
-2.697 -2.697

-3.223

Factored form gain multiplier: -24.06
Plant Case: 18 Element: {1, 2}

Roots of Numerator Roots of Denominator
0.9645
-0.007553 + 0.5384 I
-0.007553 - 0.5384 1
-0.02719
-0.391 + 2.962 I
-0.391 - 2.962 1
-2.697
-3.223

Factored form gain multiplier: O
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Plant Case: 18 Element: (2, 1}

Roots of Numerator Roots of Denominator
0.9645
-0.007553 + 0.5384 1
-0.007553 - 0.5384 1
-0.02719
-0.391 + 2.962 1
-0.391 - 2.962 1
-2.697
-3.223

Factored form gain multiplier: 0

Plant Case: 18 Element: {2, 2}

Roots of Numerator Roots of Denominator
0.9645 0.9645

0 -0.007553 + 0.5384 1
-0.007553 + 0.5384 1I -0.007553 - 0.5384 1
-0.007553 - 0.5384 I -0.02719

-0.3749 + 3.578 1 -0.391 + 2.962 1
-0.3749 - 3.578 1 -0.391 - 2.962 1
-3.223 -2.697

-3.223

Factored form gain multiplier: -12.68
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A.1.19 Plant Case 19

Plant Case: 1% Element: {1, 1}

Roots of Numerator

-0.03008318398
-0.03448

-0.4996 + 3.129 I
-0.4996 - 3.129 I
-1.079585586
-2.171

Factored form gain multiplier:

Roots of Denominator
-0.01516 + 0.02343 I
-0.01516 - 0.02343 I

-0.03448

-0.4996 + 3.129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

-34.3625

Plant Case: 19 Element: {1, 2}

Roots of Numerator

Factored form gain multiplier:

Roots of Denominator
-0.01516 + 0.02343 1
~0.01516 - 0.02343 I
-0.03448

-0.4996 + 3.125 1

-0.4996 - 3.129 I
-0.8012 + 6.592 1
-0.8012 - 6.5922 1
-2.171

0
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Plant Case: 19 Element: (2, 1}

Roots of Numerator

Factored form gain multiplier:

Roots of Denominator
-0.01516 + 0.02343 1
-0.01516 - 0.02343 1
-0.03448

-0.4996 + 3.129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

0

Plant Case: 19 Element: {2, 2}

Roots of Numerator

-0.01516 + 0.02343 I

-0.01516 - 0.02343 I
-0.3943568208 + 4.656189818 I
-0.3943568208 - 4.656189818 I
-0.8012 + 6.592 1

-0.8012 - 6.592 I

Factored form gain multiplier:

Roots of Denominator
-0.01516 + 0.02343 I
-0.01516 - 0.02343 I
-0.03448

-0.4996 + 3,129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

-25.818
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A.1.20 Plant Case 20

Plant Case: 20 Element: {1,

Roots of Numerator

1}

Roots of Denominator

0 -0.01516 + 0.02343 1
-0.03015996745 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 1 -0.4996 + 3.129 I
-0.4996 -~ 3.129 1 -0.4996 - 3.129 1
-1.063589349 -0.8012 + 6.592 1
-2.171 -0.8012 - 6.592 1

-2.171
Factored form gain multiplier: -17.9125
Plant Case: 20 Element: {1, 2}

Roots of Numerator

.02996

.03448

.45996 + 3.129 1
.4596 3.129 1
.097

2171

Factored form gain multiplier:

Roots of Denominator

-0.01516 + 0.02343 1
-0.01516 - 0.02343 I
-0.03448

-0.4596 + 3.129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

4.1125
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Plant Case: 20 Element: {2, 1}

Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 1 -0.01516 - 0.02343 1
-0.01516 - 0.02343 1 -0.03448
-0.3774 + 4.319155473 1 -0.4996 + 3.129 1
-0.3774 - 4.319155473 I -0.4996 - 3.129 1
-0.8012 + 6.592 1 -0.8012 + 6.592 1
-0.8012 - 6.592 1 -0.8012 - 6.592 1
-2.171

Factored form gain multiplier: 23.3

Plant Case: 20 Element: {2, 2}

Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 1
-0.01516 + 0.02343 1 -0.01516 - 0.02343 I
-0.01516 - 0.02343 1 -0.03448
-0.399297224 + 4.749877372 I -0.4996 + 3.129 1
-0.389297224 - 4.749877372 1 -0.4996 - 3.129 1
-0.8012 + 6.592 1 -0.8012 + 6.592 1
-0.8012 - 6.592 1 -0.8012 - 6.592 1
-2.171

Factored form gain multiplier: -19.993
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A.1.21 Plant Case 21

Plant Case: 21 Element: {1,

Roots of Numerator

1}

Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03002242458 -0.01516 - 0.02343 1
-0.03448 -0.03448
-0.4996 + 3.129 1 -0.4996 + 3.129 1
-0.4996 - 3.129 I -0.4996 - 3.129 1
-1.088103578 -0.8012 + 6.5%92 1
-2.171 -0.8012 -~ 6.592 1I

-2.171
Factored form gain multiplier: -33.63125
Plant Case: Element: {1, 2}

21

Roots of Numerator

.03448
.0345¢8
.4596
.49%6
.6861
L1711

+ 3.129 1
3.129 1

Factored form gain multiplier:

Roots of Denominator

-0.01516 + 0.02343 I
-0.01516 - 0.02343 1
-0.03448

-0.4996 + 3.129 1
-0.4996 - 3.129 I
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

2.825
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Plant Case: 21 Element:

Roots of Numerator

0

-0.01516 + 0.02343 I
-0.01516 - 0.02343 1
-0.4083 + 4.916 I
-0.4083 - 4.916 1
-0.8012 + 6.592 1
-0.8012 - 6.592 I

Factored form gain multiplier:
Plant Case: 21 Element:

Roots of Numerator

0
-0.01516 + 0.02343 1
-0.01516 - 0.02343 I

-0.3890844027 + 4.554074665 1
-0.3850844027 - 4.554074665 I
-0.8012 + 6.592 1

-0.8012 - 6.592 I

Factored form gain multiplier:

{2, 1}

Roots of Denominator

-0.01516 + 0.02343 1

-0.01516 - 0.02343 I
-0.03448

-0.4996 + 3.129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 I
-2.171

1.771

(2, 2}

Roots of Denominator

-0.01516 + 0.02343 1

-0.01516 - 0.02343 I
-0.03448
-0.4996 + 3.129 I
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

-18.734
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A.1.22 Plant Case 22

Plant Case: 22 Element: (1,

Roots of Numerator

1}

Roots of Denocminator

0 -0.01516 + 0.02343 I
-0.03008318398 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 1 -0.4996 + 3.129 1
-0.4996 - 3.129 1 -0.4996 - 3.129 1
-1.079585586 -0.8012 + 6.592 1
-2.171 -0.8012 - 6.592 1

-2.171
Factored form gain multiplier: -17.18125
Plant Case: 22 Element: (1, 2}

Roots of Numerator

0

-0.03136785809
-0.03448

-0.49%6 + 3.129 1
-0.4996 - 3.129 I
-0.9267337781
-2.171

Factored form gain multiplier:

Roots of Denominator

-0.01516 + 0.02343 1
-0.01516 - 0.02343 1
-0.03448

-0.4996 + 3.129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

7.0375
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Plant Case:

22 Element: (2, 1}

Roots of Numerator

Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 1 -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.379582757 + 4.364003618 I -0.4996 + 3.129 I
-0.379582757 - 4.364003618 I -0.4996 - 3.129 1
-0.8012 + 6.592 I -0.8012 + 6.592 1
-0.8012 - 6.592 1 -0.8012 - 6.592 1

-2.171
Factored form gain multiplier: 25.071
Plant Case: 22 Element: {2, 2}

Roots of Numerator

Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.034438
-0.3943568208 + 4.656189818 I -0.4996 + 3.129 I
-0.3543568208 - 4.656189818 I -0.4996 - 3.129 I
-0.8012 + 6.592 1 -0.8012 + 6.592 I
-0.8012 - 6.592 1 -0.8012 - 6.592 1

-2.171
Factored form gain multiplier: -12.909
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A.1.23 Plant Case 23

Plant Case: 23 Element: {1,

Roots of Numerator

Roots of Numerator

0

-0.02634744656
-0.03448

-0.49%6 + 3.129 1
-0.49%86 - 3.12¢ I
-2.101318711
-2.171

Factored form gain multiplier:

1)

Roots of Denominator

0 -0.01516 + 0.02343 1
-0.03008318398 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 1 -0.4996 + 3.129 1
-0.4996 - 3.129 1 -0.4996 - 3.129 1
~1.079585586 -0.8012 + 6.592 1
-2.171 -0.8012 - 6.592 1

-2.171
Factored form gain multiplier: -17.18125
Plant Case: 23 Element: {1, 2}

Roots of Denominator

-0.01516 + 0.02343 1
-0.01516 - 0.02343 1
-0.0344¢

~0.49%6 + 3.129 1
-0.4¢86 - 3.129 1I
-0.8012 + 6.592 1
-0.8012 - 6.562 1
-2.171

1.1875
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Plant Case: 23 Element: {2, 1}

Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 I
~0.01516 + 0.02343 1 -0.01516 - 0.02343 I
-0.01516 - 0.02343 1 -0.03448
-0.3748581309 + 4.266333269 I -0.49%6 + 3.129 1
-0.3748581309 - 4.266333269 I -0.4996 - 3.129 1
-0.8012 + 6.592 1 -0.8012 + 6.592 1
-0.8012 - 6.592 1 -0.8012 - 6.592 1
-2.171
Factcored form gain multiplier: 21.529
Plant Case: 23 Element: {2, 2}
Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 1
-0.01516 + 0.023.:3 1 -0.01516 - 0.02343 1
-0.0151%6 - 0.02343 1 -0.03448
-0.3%533568208 + 4.656189818 I -0.4996 + 3.129 I
-0.3943568208 - 4.656189818 I -0.4996 - 3.129 I
-0.8012 + 6.592 1 -0.801z + 6.592 1
-0.8012 - 6.592 1 -0.8012 - 6.592 1
-2.171

Factored form gain multiplier: -12.909
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A.1.24 Plant Case 24

Plant Case: 24 Element: (1, 1}

Roots of Numerator

-0.0286%6

-0.03448

-0.4996 + 3.129 I
-0.4996 - 3.128 1
-1.097

-2.171

Factored form gain multiplier:

Plant Case: 24 Element: (1,

Roots of Numerator

Factored form gain multiplier:

Roots of Denominator
-0.01516 + 0.02343 1
-0.01516 - 0.02343 1
-0.03448

-0.4996 + 3.129 1

-0.4996 - 3.129 1
-0.8012 + 6.592 I
-0.8012 - 6.592 1
-2.171

-32.9
2}

Roots of Denominator
-0.01516 + 0.02343 1
-0.01516 - 0.02343 I
-0.03448

-0.4996 + 3.129 I

-0.4996 - 3.129 I
-0.8012 + 6.592 1
-0.8012 - 6.592 1
-2.171

0
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Plant Case: 24 Element: (2, 1}

Roots of Numerator Roots of Denominator
-0.01516 + 0.02343 I
-0.01516 - 0.02343 1

-0.03448
-0.4996 + 3.129 1
-0.4996 - 3.129 1
-0.8012 + 6.592 1
-0.8012 - 6.592 I
-2.171
Factored form gain multiplier: 0
Plant Case: 24 Element: {2, 2}
Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 1
-0.01516 + 0.02343 1 -0.01516 - 0.02343 1
-0.01516 - 0.02343 1 -0.03448
-0.3774 + 4.319155473 1 -0.4996 + 3.125 1
-0.3774 - 4.319155473 I -0.49%6 - 3.129 1
-0.8012 + 6.5%2 1 -0.8012 + 6.592 1
-0.8012 - 6.592 1 -0.8612 - 6.592 1
-2.171

Factored form gain multiplier: -11.65
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A2 Pe Determinants From CAD Package

Plant Case: 1

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
0 0.3633
0 -0.07682999737 + 0.2065 1
-0.01750899094 -0.07682999737 - 0.2065 1
-0.2236638493 + 1.029339632 1 -0.1041
~0.2236638493 - 1.029339632 1 -0.2741 + 1.909 1
-0.4616997602 -0.2741 - 1.909 1

-0.6835

-1.3

Plant Case: 2

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
0 0.3633
0 -0.07682999737 + 0.2065 I
-0.01617592182 -0.07682999737 - 0.2065 1
-0.2031816462 + 0.8466260833 I -0.1041
-0.2031816462 - 0.8466260833 1 -0.2741 + 1.909 1
-0.4708634842 -0.2741 - 1.909 1

-0.6835

-1.3

Plant Case: 3

Roots of Numerator of Det{Pe] Roots of Denominator of Det([Pe]
Q 0.3633
0 -0.07682999737 + 0.2065 I
-0.01800469395 -0.07682999737 - 0.2065 I
-0.2357205606 + 1.130855201 I -0.1041
-0.2357205606 - 1.130855201 1 -0.2741 + 1.909 1
-0.4582391881 -0.2741 - 1.909 I
-0.6835
-1.3
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Plant Case: 4

Roots of Numerator of Det[Pe]

-0.02559309899
-0.2255463507 + 0.9379562951 1
-0.2255463507 - 0.9379562951 I
-0.4123328591

Plant Case: S

Roots of Numerator of Det([Pe]

-0.007096831889

-0.1695335828 + 0.7432415914 I
-0.1695335828 - 0.7432415514 1
-0.5339345123

Plant Case: 6

Roots of Numerator of Det[Pe)

-0.01822

-0.3017 + 1.562 1
-0.3017 - 1.562 1
-0.4568

Roots of Denominator of Det[Pe]
0.3633

-0.07682999737 + 0.2065 I
-0.07682999737 - 0.2065 I
-0.1041

-0.2741 + 1.909 1

-0.2741 - 1.909 1

-0.6835

-1.3

Roots of Denominator of Det[Pe]
0.3633

-0.07682559737 + 0.2065 I
-9.076862999737 - 0.2065 1
-0.1041

~0.2741 + 1.909 1

-0.2741 - 1.909 1

-0.6835

-1.3

Roots of Denominator of Det[Pe]
0.3633

-0.07682599737 + 0.2065 1
-0.07682999737 - 0.2065 I
-0.1041

-0.2741 + 1.909 1

-0.2741 - 1.909 1

~-0.6835

-1.3
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Plant Case: 7

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
0 1.167
0 0.07785
-0.009939645444 -0.006472 + 0.07803 1
-0.2231060935 + 1.697351372 1 -0.006472 - 0.07803 I
-0.2231060935 - 1.697351372 1 -0.211 + 1.953 1
-0.5620045698 -0.211 - 1.953 1

~0.8265

-2.028

Plant Case: 8

Roots of Numerator of Det[Pe] Roots of Denominator of Det(Pe]
0 1.167
0 0.077985
-0.0058815072143 -0.006472 + 0.07803 I
-0.21830485625 + 1.608183851 I -0.006472 - 0.07803 I
-0.2183048925 - 1.608183851 1 -0.211 + 1.953 1
-0.5773165868 -0.211 - 1.953 1
-0.8265
-2.028

Plant Case: 9

Roots cof Numerator of Det([Pe] Roots of Denominator of Det{Pe}
0 1.167
0 0.07795
-0.01001950949 -0.006472 + 0.07803 1
-0.2257480147 + 1.760063131 I -0.006472 - 0.07803 1
-0.2257480147 - 1.760063131 I -0.211 + 1.953 1
-0.5525460655 -0.211 - 1.853 1
-0.8265
-2.028
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Plant Case: 10

Roots of Numerator of Det(Pe]

-0.01065676636

-0.231887918 + 1.587406074 I
-0.231887918 - 1.587406074 I
-0.4844613815

Plant Case: 11

Roots of Numerator of Det(Pe]

-0.00656812017¢
-0.2083565407 + 1.62577185 I
-0.2083665407 - 1.62577185 I
-0.6050827582

Plant Case: 12

Rcots ¢of Numerator of Det[Pe]

-0.01004
-0.2442 + 2.101 1
-0.2442 - 2.101 1
-0.5502

Roots of Denominator of Det[Pe]
1.167
0.07785
-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 1I
-0.211 -~ 1.953 1
-0.8265
-2.028

Roots of Denominator of Det({Pe]
1.167

0.07795

-0.006472 + 0.07803 1

-0.006472 - 0.07803 1

-0.211 + 1.953 1

-0.211 - 1.953 1

~-0.8265

-2.028

Roots of Denominator of Det[Pe]
1.167
0.07785
-0.006472 + 0.07803 1
-0.006472 - 0.07803 I
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265
-2.028
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Plant Case: 13

Roots of Numerator of Det{Pel

-0.01261453256

-0.3582378099 + 3.06754481 I
-0.3582378099 - 3.06754481 I
-1.518569%41

Plant Case: 14

Roots of Numerator of Det[Pe]

-0.01260815216

-0.354043529 + 2.937631878 1I
-0.354043529 - 2.937631878 I
-1.5285798651

Plant Case: 15

Roots of Numerator of Det[Pe]

-0.01261877154

-0.3606727016 + 3.162975977 I
-0.3606727016 - 3.162975977 I
-1.511867408

Roots of Denominator of Det[Pe])
0.9645

-0.007553 + 0.5384 I

-0.007553 - 0.5384 I

-0.02719

-0.391 + 2.962 1

-0.391 - 2.962 1

-2.697

-3.223

Roots of Denominator of Det[Pe]
0.9645

-0.007553 + 0.5384 I

-0.007553 - 0.5384 I

-0.02719

-0.391 + 2.962 1

-0.391 - 2.962 I

-2.697

-3.223

Roots of Denominator of Det[Pe]
0.9645

-0.007553 + 0.5384 1

-0.007553 - 0.5384 I

-0.02719

-0.391 + 2.962 1

-0.391 - 2.962 1

-2.697

-3.223
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Plant Case: 16

Roots of Numerator of Det[Pe]

-0.01268136836

-0.3638212458 + 2.642435984 I
-0.3638212458 - 2.642435984 I
-1.425766242

Plant Case: 17

Roots of Numerator of Det[Pe]

-0.01255578413

-0.3541334715 + 3.077600345 I
-0.3541334715 - 3.077600345 1
-1.54738822

Plant Case: 18

Roots of Numerator of Det[Pe]

-0.01262

-0.3749 + 3.578 I
-0.374¢ - 3.578 1
-1.51

Roots of Denominator of Det[Pe]
0.9645

-0.007553 + 0.5384 I

-~0.007553 - 0.5384 1

-0.02719

-0.391 + 2.962 1

-0.391 - 2.962 I

-2.697

-3.223

Roots of Denominator of Det[Pe]
0.9645

-0.007553 + 0.5384 I

-0.007553 - 0.5384 1

-0.02719

-0.391 + 2.962 1

-0.391 - 2.962 1

-2.697

-3.223

Roots of Denominator of Det[Pe]
0.9645

-0.007553 + 0.5384 1

-0.007553 - 0.5384 1

-0.02719

-0.391 + 2.962 1

-0.391 - 2.962 1

-2.697

-3.223
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Plant Case: 19

Roots of Numerator of Det{Pe]

-0.03008318398

-0.3943568208 + 4.656189818 I
-0.3643568208 - 4.656189818 I
-1.079585586

Plant Case: 20

Roots of Numerator of Det([Pe]

-0.03027103524

-0.4059826056 + 4.898011078 I
-0.4059826056 - 4.898011078 1I
-1.054028453

Plant Case: 21

Roots of Numerator of Det([Pe]

-0.0299951359
-0.3886587722 + 4.551009274 I
-0.3886587722 - 4.551009274 I
-1.091958693

Roots of Denominator of Det[Pe]
~0.01516 + 0.02343 1

-0.01516 - 0.02343 1

-0.03448

-0.4996 + 3.129 1T

-0.4996 3.129 1

-0.8012 + 6.592 1

-0.8012 6.592 1

-2.170999975

Roots of Denominator of Det{Pe]
-0.01516 + 0.02343 1

-0.01516 - 0.02343 1

-0.03448

-0.4996 + 3.129 1

-0.4996 - 3.129 1

-0.8012 + 6.592 1

-0.8012 - 6.592 1

-2.170999975

Roots of Denominator of Det[Pe]
-0.01516 + 0.02343 I

-0.01516 - 0.02343 1

-0.03448

-0.4996 + 3.129 1

-0.4996 - 3.129 1

-0.8012 + 6.592 1

-0.8012 - 6.592 1

-2.170999975
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Plant Case: 22

Roots of Numerator of Det[Pe]

-0.0281768207
-0.5658911377 + 5.6216463 I
-0.5658911377 - 5.6216463 I
-1.442576725

Plant Case: 23

Roots of Numerator of Det[Pe)

-0.03056598596
-0.3853668583 + 4.706629116 1
-0.38535668983 - 4.706629116 I
-0.9681322627

Plant Case: 24

Roots cof Numerator of Det([Pe}

-0.02095

-0.3774 + 4.319155473 1
-0.3774 - 4.319155473 I
-1.097

Roots of Denominator of Det[Pe]
-0.01516 + 0.02343 1

-0.01516 - 0.02343 1

-0.03448

-0.4996 + 3.129 1

-0.4996 - 3.129 1

-0.8012 + 6.592 1

-0.8012 - 6.592 I

-2.170999975

Roots of Denominator of Det{[Pe]

-0.01516 + 0.02343 1
-0.01516 - 0.02343 1

-0.03448

-0.4996 + 3.129 I
-0.4996 - 3.129 1I
-0.8012 + 6.592 1
-0.8012 - 6.592 I
-2.171

Roots of Denominator of Det|[Pe]
~0.0151¢6 + €.02343 1

-0.01516 - 0.02343 I

-0.03448
-0.4996 + 3.129
-0.4996 - 3.129
-0.8012 + 6.592
-0.8012 - 6.592
-2.170999975

HoH - M
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A3 Q Matrix from CAD Package

A.3.1 Plant Case }

Plant Case: 1 Element: (1, 1)}

Roots of Numerator

-0.01750859¢94
-0.461693875(2
Fac*cred form gain multiplier:
Plart Case: 1 Element: (1, 2}

Rocts of Numerator

Factored form gain multiplier:

Plart Case: 1 Element: {2, 1}

Factored form gain multiplier:
Flarnt Case: 1 Element: (2. 2}

Roots ©of Numerator

38463 + 1.029339632 1
38453 - 1.025339632 1

Factcred form gain multiplier:

Roots of Denominator

0.3633

-0.07683 + 0.2065 1
-0.07683 - 0.2065 1
-1.3

-2.17555

Roots of Denominator

Infinity

Roots of Denominator

Infinity

Roots of Denominator

-0.1041
~0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.6835

-5.548
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A.3.2 Plant Case 2

Piant Case: 2 Element: {1, 1)

Rcots of Numerator
o]
-0.016175%2182
-0.2031816462 +
-0.2031816462 -
-0.4708634843

0.8465260833 1
0.8466260833 1

Factored form gain multiplier:

Plant Case: 2 Element: {1, 2}

Rcots of Numerater

O

-0.01517592182
-N.203181¢462 + 0.8466260833 I
-C.2031816462 - 0.8455260833 1
-0 4728634843

Factcred form gain multiplier:

Roots of Denominator

0.3633
-0.07683 + 0.2065 1
-0.07683 - 0.2065 1

-0.2153286826 + 0.9546662645 1
-0.2153286826 - 0.9546662645 1
-1.3

-0.9381346215

Roots of Denominator

-0.1041
-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.4568
-0.6835

-16.82768488
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Plant Case: 2 Element: {2, 1}

Roots of Numerator

-0.01617592182

-0.2031816462 + 0.8466260833 I
-0.2031816462 - 0.8466260333 I
-0.4708634843

Factored form gain multiplier:

Plant Case: 2 Element: {2, 2}

Roots of Numerator

-0.01617592182
-0.2031816462 + 0.8466260833 I
-0.2031816462 - 0.8466260833 I
-0.4708634843

Factored form gain multiplier:

Roots of Denominator

.3633
-0.
-0.
-0.
-0.
-1.

07683 + 0.2065 1
07683 - 0.2065 1
3017 + 1.562 1
3017 - 1.562 1

3

-2.195769339

Roots of Denominator

.01677417266
.1041

L2741 + 1.909 1
.2741 - 1.909 1
.4668627603
.6835

-4.447390596
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A.3.3 Plant Case 3

Plant Case: 3 Element: {1, 1}

Roots of Numerator Roots of Denominator

0 0.3633

-0.01800469395 -0.07683 + 0.2065 I

-0.2357205606 + 1.130855201 I -0.07683 - 0.2065 I

-0.2357205606 - 1.130855201 I -0.2362887311 + 1.132993757 1

-0.4582391881 -0.2362887311 - 1.132993767 1
-1.3

Factored form gain multiplier: -2.226220249

Plant Case: 3 Element: {1, 2}

Roots of Numerator Roots of Denominator

0 -0.06537

-0.01800469395 ~0.1041

-0.2357205606 + 1.130855201 I -0.2589

-0.2357205600 - 1.130855201 1 -0.2741 + 1.909 1

-0.4582391881 -0.2741 - 1.909 1
-0.6835

Factored form gain multiplier: 60.9494543
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Plant Case: 3 Element: {2, 1}

Roots of Numerator Roots of Denominator
6] 0.3633
-0.01800469395 -0.07683 + 0.2065 1
-0.2357205606 + 1.130855201 T -0.07683 - 0.2065 I
-0.2357205606 - 1.130855201 I -0.205 + 0.853 1
-0.4582391881 -0.205 - 0.853 1
-1.3

Factored form gain multiplier: -13.16442881

Plant Case: 3 Element: {2, 2)

Roots of Numerator Roots of Denominator

0 -0.01786739384

-0.01800469395 -0.1041

-0.2357205606 + 1.130855201 I -0.2741 + 1.909 1

-0.2357205606 - 1.130855201 I -0.2741 - 1.909 1

-0.4582391881 -0.4592182832
-0.6835

Factored form gain multiplier: -3.340680271
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A.3.4 Plant Case 4

Plant Case: 4 Element: (1, 1}

Roots of Numerator

-0.02559309839
-0.2255463507 + 0.9379562951 I
-0.2255463507 - 0.9379562951 1
-0.4123328591

Factored form gain multiplier:

Plant Case: 4 Element: (1, 2}

Roots of Numerator

-0.02559309899

-0.2255463507 + 0.9375562951 1
-0.2255463507 - 0.9379562951 1T
-0.4123328591

Factored form gain multiplier:

Roots of Denominator

0.3633

-0.07683 + 0.2065 I

-0.07683 - 0.2065 I
-0.2236638493 + 1.029339632 I
-0.2236638493 - 1.029339632 1
-1.3

~0.9333336412

Roots of Denominator
.003009051506
.1041

-0.2741 + 1.909 1
-0.2741 - 1.909 1
-0.5869269321
-0.6835

-16.32745389
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Plant Case: 4 Element: (2, 1}

Roots of Numerator Roots of Denominator
0 0.3633
-0.02559309899 -0.07683 + 0.2065 1

-0.2255463507 + 0.9379562951 1 -0.07683 - 0.2065 I

-0.2255463507 - 0.9379562951 1 -0.2816656426 + 1.444520055 I

-0.4123328591 -0.2816656426 - 1.444520055 1
-1.3

Factored form gain multiplier: -0.9584655085

Plant Case: 4 Element: {2, 2}

Roots of Numerator Roots of Denominator
0 -0.0175089%094
-0.02559309899 -0.1041

-0.2255463507 + 0.9373562951 1 -0.2741 + 1.909 I

-0.2255463507 - 0.9379562951 1 -0.2741 ~ 1.909 I

-0.4123328591 -0.4616997602
-0.6835

Factored form gain multiplier: -2.380578877
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T ——————

A.3.5 Plant Case S

Plant Case: 5 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.3633
-0.007056831889 -0.07683 + 0.2065 1

-0.1695335828 + 0.7432415914 I -0.07683 - 0.2065 1

-0.1695335828 - 0.7432415914 I -0.2236638493 + 1.029339632 I

-0.5339345123 -0.2236638493 - 1.029339632 1
-1.3

Factored form gain multiplier: -0.8594337133

Plant Case: 5 Element: {1, 2}

Roots of Numerator Roots of Denominator
Q -0.0271399588
-0.007096831889 -0.1041

-0.1695335828 + 0.7432415%14 1 -0.2741 + 1.909 1

-0.1655335828 - 0.7432415914 I -0.2741 - 1.909 1

-0.5339345123 -0.4023613724
-0.6835

Factored form gain multiplier: -5.955291802
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Plant Case: 5 Element: (2, 1}

Roots of Numerator Roots of Denominator
0 0.3633
-0.007096831889 -0.07683 + 0.2065 I

-0.1695335828 + 0.7432415914 I -0.07683 - 0.:065 I

-0.1695335828 - 0.7432415914 1 -0.3359094012 + 1.743875067 I

-0.5339345123 -0.3359094012 - 1.743875067 1
-1.3

Factored form gain multiplier: -1.507030392

Plant Case: 5 Element: (2, 2}

Roots of Numerator Roots of Denominator
0 -0.01750899094
-0.007096831889 -0.1041

-0.1695335828 + 0.7432415914 1 ~0.2741 + 1.909 1

-0.1695335828 - 0.7432415914 I -0.2741 - 1.909 1

-0.5339345123 -0.4616997602
-0.6835

Factored form gain multiplier: -2.192088288

A-65




A.3.6 Plant Case 6

Plant Case: 6 Element: ({1, 1}

Roots of Numerator Rcots of Denominator
0 0.3633
-0.01822 -0.07683 + 0.2065 I
-0.4568 -0.07683 - 0.2065 1
-1.3

Factored form gain multiplier: -2.236
Plant Case: 6 Element: {1, 2]}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity
Plant Case: 6 Element: {2, 1}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 6 Element: (2, 2)

Roots of Numerator Roots of Denominator
o] -0.1041
-0.3017 + 1.%62 1 ~0.2741 + 1.909 1
-0.3017 - 1.562 I -0.2741 - 1.909 1
-0.6835

Factored form gain multiplier: -1.071
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A.3.7 Plant Case 7

Plant Case: 7 Element: {1, 1}

Roots of Numerator

-0.009939645444
-0.5620045698

Factored form gain multiplier:

Plant Case: 7 Element: {1, 2}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 7 Element: {2, 1}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 7 Element: {2, 2}

Roots of Numerator

-0.2231060935 + 1.697351372 1
-0.2231060935 - 1.697351372 I

Factored form gain multiplier:

Roots of Denominator

1.167
-0.006472 + 0.07803 1
-0.006472 - 0.07803 1
-2.028

-5.91495

Roots of Denominator

Infinity

Roots of Denominator

Infinity

Roots of Denominator

0.07735
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.8265

-20.842
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A.3.8 Plant Case 8

Plant Case: 8 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 1.167
-0.009815072143 -0.006472 + 0.07803 1
-0.2183048925 + 1.608183851 I -0.006472 - 0.07803 1
-0.2183048925 - 1.608183851 I -0.2212351442 + 1.656795028 1
-0.5773169868 -0.2212351442 - 1.656795028 I
-2.028

Factored form gain multiplier: -2.723981446

Plant Case: 8 Element: (1, 2}

Roots of Numerator Roots of Denominator
0 0.07785
-0.009815072143 -0.01004
-0.2183048%925 + 1.608183851 1 ~0.211 + 1.953 I
-0.2183048925 - 1.608183851 I -0.211 - 1.953 1
-0.5773169868 -0.5502

-0.8265

Factored form gain multiplier: -71.16738424
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e —————

Plant Case: 8 Element: (2, 1}

Roots of Numerator Roots of Denominator
0 1.167
-0.009815072143 -0.006472 + 0.07803 1
-0.2183048925 + 1.608183851 I -0.006472 - 0.07803 1
-0.2183048925 - 1.608183851 I -0.2442 + 2,101 1
-0.5773169868 -0.2442 - 2.101 1
-2.028

Factored form gain multiplier: -7.677841696

Plant Case: 8 Element: ({2, 2}

Roots of Numerator Roots of Denominator
0 0.07795
-0.009815072143 -0.009845163158
-0.2183048925 + 1.608183851 1 =0.211 + 1.953 1
-0.2183048925 - 1.608183851 I -0.211 - 1.953 I
-0.5773165868 -0.5735955769
~0.8265

Factcred form gain multiplier: -17.476130%
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A.3.9 Plant Case 9

Plant Case: 9 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 1.167
-0.01001550949 -0.006472 + 0.07803 I
-0.2257480147 + 1.760063131 1 -0.006472 - 0.07803 1
-0.2257480147 - 1.760063131 I -0.2260615727 + 1.759509227 I
-0.5525460655 -0.2260615727 - 1.759509227 1
-2.028

Factored form gain multiplier: -5.869418855

Plant Case: 9 Element: {1, 2}

Roots of Numerator Roots of Dencminator
0 0.07795
-0.01001550949 -0.006697
-0.2257480147 + 1.760063131 1 -0.211 + 1.953 1
-0.2257480147 - 1.760063131 I -0.211 - 1.953 1
-0.5525460655 -0.8265

-1.861

Factored form gain multiplier: -671.6854306
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Plant Case: 9 Element: {2, 1}

Roots of Numerator

-0.01001950%49

-0.2257480147 + 1.760063131 1I
-0.2257480147 - 1.760063131 1
-0.5525460655

Factored form gain multiplier:

Plant Case: 9 Element. {2, 2}

Roots ¢f Numerator

-0.01001950649
-0.2257480147 + 1.760063131 I
-0.2257480147 - 1.760063131 1
-0.5525460655

Factored form gain multiplier:

Roots of Denominator
1.167

-0.006472 + 0.07803 1
-0.006472 - 0.07803 1
-0.219 + 1.607 1
-0.219 - 1.607 1
-2.028

-32.61790077

Roots of Denominator
0.07795
-0.009989054852
-0.211 + 1.953 1
-0.211 - 1.953 1
-0.5561293643
-0.8265

-12.07978078
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A.3.10 Plant Case 10

Plant Case: 10 Element: {1, 1}

Roots cof Numerator Roots of Denominator
0 1.167
-0.01069676636 -0.006472 + 0.07803 1
-0.231887918 + 1.587406074 1I -0.0606472 - 0.07803 I
-0.231887918 - 1.587406074 I -0.2231060935 + 1.697351372 1
-0.4844613815 -0.2231060935 - 1.697351372 1
-2.028

Factored form gain multiplier: -2.235375702

Plant Case: 10 Elemnent: {1, 2}

Roots of Numerator Roots of Denominator
0 0.07785
-0.01065676636 -0.008933835362
-0.2318879%18 + 1.587406074 1 -0.211 + 1.953 1
-0.231887918 - 1.587406074 I -0.211 - 1.953 1
-0.4844613815 -0.716404473

-0.8265

Factored form gain multiplier: -27.77660548
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Plant Case: 10 Element: (2, 1}

Roots of Numerator Roots of Denominator
0 1.167
-0.01069676636 -0.006472 + 0.07803 1
-0.231887918 + 1.587406074 I -0.006472 - 0.07803 1
-0.231887918 - 1.587406074 I -0.2380753559 + 1.992266599 1
-0.45644613815 -0.2380753559 - 1.992266599 I
-2.028

Factored form gain multiplier: -2.596177336

Plant Case: 10 Element: (2, 2}

Roots of Numerator Roots of Denominator
0 0.07795
-0.01069676636 -0.005939645444
-0.231887918 + 1.587406074 1 -0.211 + 1.953 1
-0.231887918 - 1.587406074 1 -0.211 - 1.953 1
-0.4844613815 -0.5620045698
-0.8265

Factored form gain multiplier: -7.87660088
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A.3.11 Plant Case 11

Plant Case: 11 Element: {1, 1}

Roots of Numerator

-0.009569120179
-0.2083665437 + 1.62577185 1
-0.2083665407 - 1.62577185 1
-0.6090927582

Factored form gain multiplier:

Plant Case: 11 Element: {1, 2}

Roots of Numerator

.009568120179

.2083665407 + 1.62577185 1
.2083665407 - 1.62577185 1
.6090927582

Factcred form gain multiplier:

Roots of Denominator

.167

-0.006472 + 0.07803 1
-0.006472 - 0.07803 I
-0.2231060935 + 1.697351372 1
-0.2231060935 - 1.697351372 1
-2.028

-2.680096431

Roots of Denominator

.07795
-0.01334841556
-0.211 + 1.953 1
-0.211 - 1:953 1
-0.3260098802
-0.8265

-44 .55487314

A-74




Plant Case: 11 Element: {2, 1}

Roots of Numerator

~0.009565120179
~0.2083665407 + 1.62577185 1
~0.2083665407 - 1.62577185 1
~0.6090927582

Factored form gain multiplier:

Plant Case: 11 Element: {2, 2}

Roots of Numerator

-0.009562120179
-0.2083665407 + 1.62577185 1
-0.2083665407 - 1.62577185 I
-0.6050927582

Pactored form gain multiplier:

Roots of Denominator

.167

.006472 + 0.07803 1
.006472 -
.2561175712 + 2.297831558 I
.2561175712 - 2.297831558 1
.028

0.07803 1I

-6.056770922

Roots of Denominator

-0

-0
-0

.07795
-0.

009939645444

.211 + 1.953 1
-0.

211 - 1.953 I
.5620045698
.8265

~9.443625022
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A.3.12 Plant Case 12

Plant Case: 12 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 1.167

-0.01004 -0.006472 + 0.07803 1

-0.5502 -0.006472 - 0.07803 1
-2.028

Factored form gain multiplier: -5.862
Plant Case: 12 Element: {1, 2}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity
Plant Case: 12 Element: (2, 1}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 12 Element: (2, 2}

Roots of Numerator Roots of Denominator
0 0.07795
-0.2442 + 2.101 1 -0.211 + 1.953 1
-0.2442 - 2.101 1 -0.211 - 1.853 1
-0.8265

Factored form gain multiplier: -3.396
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A.3.13 Plant Case 13

Plant Case: 13 Element: {1, 1}

Roots of Numerator Roots of Denominator

0 0.9645

-0.01261453256 -0.007553 + 0.5384 1

-1.518569941 -0.007553 - 0.5384 I
-3.223

Factored form gain multiplier: -25.678
Plant Case: 13 Element: (1, 2}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity
Plant Case: 13 Element: (2, 1}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 13 Element: {2, 2}

Roots of Numerator Roots of Denominator
0 -0.02719
-0.3582378099 + 3.06754481 I -0.391 + 2.962 1
-0.3582378099 - 3.06754481 I -0.391 - 2.962 1
-2.697

Factored form gain multiplier: -63.74
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A.3.14 Plant Case 14

Plant Case: 14 Element: {1, 1}
Roots of Numerator

0

-0.01260815216

-0.354043529 + 2.937631878 1
-0.354043529 - 2.937631878 I
-1.528579891
Factored form gain multip’ier:
Plant Case: 14 Element: (1, 2}

Roots of Numerator

-0.01260815216

-0.354043529 + 2.937631878 1
-0.354043529 - 2.937631878 I
-1.528579891

Factored form gain multiplier:

Roots of Denominator

0.9645

-0.007553 + 0.5384 1
-0.007553 - 0.5384 1
-0.3563974216 + 3.005846427 1
-0.3563974216 - 3.005846427 1
-3.223

-12.31825087

Roots of Denominator

0391 + 2.962 1
-0.391 2.962 1
-1.51
-2.697

-235.120532
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Plant Case: 14 Element: (2, 1}

Roots of Numerator Roots of Denominator

0 0.9645

-0.01260815216 -0.007553 + 0.5384 1

-0.354043529 + 2.937631878 1 -0.007553 - 0.5384 1

-0.354043529 - 2.937631878 1 -0.3749 + 3.578 1

-1.528579891 -0.3749 - 3.578 1
-3.223

Factored form gain multiplier: -27.88347792

Plant Case: 14 Element: {2, 2}

Roots of Numerator Roots of Denominator
0 -0.01260976464
-0.01260815216 -0.02719
-0.354043529 + 2.937631878 I -0.391 + 2.962 1
-0.354043529 - 2.937631878 I -0.391 - 2.962 1
-1.52857¢891 -1.526123846
-2.697

Factored form gain multiplier: -51.81162075
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A.3.15 Plant Case 15

Plant Case: 15 Element: (1,

Roots of Numerator

-0.01261877154

~0.3609727016 + 3.162975977 1
-0.3609727016 3.162975977 1
-1.511867408

Factored form gain multiplier:

Plant Case: 15 Element: (1,

Roots of Numerator

0

-0.01261877154

-0.3609727016 + 3.162575977 1
-0.3608727016 - 3.162875977 1
-1.511867408

Factored form gain multiplier:

1}

Roots of Denominator

-0

2}

.9645
-0.
.007553 - 0.5384 1
-0.
-0.
-3.

007553 + 0.5384 1I

3610024863 + 3.157962895 1
3610024863 - 3.157962895 I
223

-24.32846689

Roots of Denominator

.02719

.391 + 2.962 1
.391 - 2.962 1
.646

.697

2653646
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Plant Case: 15 Element: (2,

Roots of Numerator

~0.01261877154

-0.3609727016 + 3.162975977 I
-0.3609727016 - 3.162975977 1
-1.511867408

Factored form gain multiplier:

Plant Case: 15 Element: {2, 2}

Roots of Numerator

-0.01261877154

-0.3609727016 + 3.162975977 1
-0.3609727016 - 3.162975977 I
-1.511867408

Factored form gain multiplier:

Roots of Denominator
0.9645

-0.007553 + 0.5384 I
-0.007553 - 0.5384 1
-0.3541 + 2.927 1
-0.3541 - 2.927 1
-3.223

-145.646803

Roots of Denominator
-0.01261716956
-0.02719

-0.391 + 2.962 1
-0.391 - 2.962 1
-1.514424371

-2.697

-37.37949737

A-81




A.3.16 Plant Case 16

Plant Case: 16 Element: {1,

Roots of Numerator

.01268136836

.3638212458 + 2.642435984 1
.3638212458 - 2.642435984 I
.425766242

Factored form gain multiplier

Plant Case: 16 Element: ({1,

Roots of Numerator

-0.01268136836

-0.3638212458 + 2.642435984 I
-0.3638212458 - 2.642435984 I
-1.425766242

Factored form gain multiplier:

1}

Roots of Denominator

0.9645

-0.007553 + 0.5384 1
-0.007553 - 0.5384 1
-0.3582378099 + 3.06754481 1
-0.3582378099 - 3.06754481 I
~3.223

-6.620477918

2}

Roots of Denominator
.01257680361
.02719

.381 + 2.962 1
.381 - 2.962 1
.580490401

. 697

-33.79428706

A-82




Plant Case: 16 Element: {2, 1}

Roots of Numerator Roots of Denominator

0 0.9645

-0.01268136836 ~0.007553 + 0.5384 I

-0.3638212458 + 2.642435984 I -0.007553 - 0.5384 1

-0.3638212458 - 2.642435984 1 -0.3707177207 + 3.456973615 I

~1.425766242 -0.3707177207 - 3.456973615 I
-3.223

Factored form gain multiplier: -6.647070371

Plant Case: 16 Element: {2, 2}

Roots of Numerator Roots of Denominator
0 -0.01261453256
-0.01268136836 -0.02719
-0.3638212458 + 2.642435984 I -0.391 + 2.962 I
-0.3638212458 - 2.642435984 I -0.391 - 2.962 1
-1.425766242 -1.518569941
-2.697

Factored form gain multiplier: -16.43388358
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A.3.17 Plant Case 17

Plant Case: 17 Element: {1, 1}

Roots of Numerator Roots of Denominator

0 0.9645

-0.01259578413 ~-0.007553 + 0.5384 I

-0.3541334715 + 3.077600345 1 -0.007553 - 0.5384 1

-0.3541334715 - 3.077600345 1 -0.3582378099 + 3.06754481 I

-1.54738922 ~0.3582378099 - 3.06754481 I
-3.223

Factored form gain multiplier: -12.97506397

Plant Case: 17 Element: {1, 2}

Roots of Numerator Roots of Denominator
0 -0.01207934927
-0.01259578413 -0.02718
-0.3541334715 + 3.077600345 1I -0.391 + 2.962 1
-0.3541334715 - 3.077600345 I -0.391 - 2.962 1
-1.54738522 -2.697

-3.435429579

Factored form gain multiplier: 1809.694918
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Plant Case: 17 Element: {2, 1}

Roots of Numerator

0

-0.01259578413

-0.3541334715 + 3.077600345 1
-0.3541334715 - 3.077600345 1
-1.54738¢%22

Factored form gain multiplier:

Plant Case: 17 Element: (2, 2}

Roots of Numerator

0

-0.0125%578413

~0.3541334715 + 3.077600345 I
-0.3541334715 - 3.077600345 I
-1.54738522

Factored form gain multiplier:

Roots of Denominator

0.9645

-0.007553 + 0.5384 1
-0.007553 - 0.5384 1
-0.381895442 + 3.771752842 1
-0.381895442 - 3.771752842 I
-3.223

-21.78976624

Roots of Denominator
.01261453256
.02719

.391 + 2.962 1
.391 2.962 1
.518569941

.697

-32.20774895
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A.3.18 Plant Case 18

Plant Case: 18 Element: {1, 1}

Roots of Numerator Roots of Denominator
0 0.9645
-0.01262 -0.007553 + 0.5384 I
-1.51 -0.007553 - 0.5384 1
-3.223

Factored form gain multiplier: -24.06
rlant Case: 18 Element: (1, 2}

Rcoots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity
Plant Case: 18 Element: {2, 1}

Roots cf Numerator Roots of Denominator

Factored form gain multiplier: Infinity

rlar*t Case: 18 Element: {2, 2)

Eoo*s cf Mumerator Roots of Denominator

0 -0.02719

-0 3749 + 3.578 1 -0.391 + 2.962 1

-53.3745% - 3.578 1 -0.391 - 2.962 1
-2.697

actored form gain multiplier: -12.68
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A.3.19 Plant Case 19

Plant Case: 19 Element: {1, 1)}

Roots of Numerator

-0.03008318398

-1.079585586

Factored form gain multiplier:
Plant Case: 19 Element: {1, 2}

Roots of Numerator

Factored form gain multiplier:
Plant Case: 19 Element: {2, 1}

Roots of Numerator

Factored form gain multiplier:
Plant Case: 1% Element: {2, 2}

Roots of Numerator

-0.3943568208 + 4.656189818 I
-0.3943568208 - 4.656189818 I

Factored form gain multiplier:

Roots of Denominator

-0.01516 + 0.02343 I
-0.01516 - 0.02343 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1

-34.3625

Roots of Denominator

Infinity

Roots of Denominator

Infinity

Roots of Denominator

-0.03448

-0.4996 + 3.129 I
-0.4996 - 3.129 1
-2.171

-25.818
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A.3.20 Plant Case 20

Plant Case: 20 Element: {1,

Roots of Numerator

-0.03027103524

-0.4059826056 + 4.898011078 I
-0.4059826056 - 4.898011078 1
-1.054028453

1}

Factored form gain multiplier:

Plant Case: 20 Element: ({1,

Roots of Numerator

-0.03027103524

-0.4059826056 + 4.8%8011078 I
-0.4059826056 - 4.898011078 1
-1.054028453

2}

Factored form gain multiplier:

Roots of Denominator

-0

.01516 + 0.02343 1

.01516 - 0.02343 1
.399297224 + 4.749877372 1
.399297224 - 4.749877372 1
.8012 + 6.592 1

-0.

8012 - 6.592 I

-13.11976004

Roots of Denominator

.03448

.4996 + 3.129 1
.4996 - 3.129 1
.097

.171

-63.78197264
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Plant Case: 20 Element: {2, 1}

Roots of Numerator

Factored form gain multiplier:

-03027103524

.4059826055 + 4.898011078 T
.4055826056 - 4.898011078 I
.054028453

Plant Case: 20 Element: {2, 2}

Roots of Numerator

-0
-0
-0
-1

Factored form gain multiplier:

.03027103524

.4059826056 + 4.898011078 I
.4059826056 - 4.898011078 I
.054028453

Roots of Denominator
-0.01516 + 0.02343 1
-0.01516 - 0.02343 1
=0.3774 + 4.318155473 1
-0.3774 - 4.319155473 1
-0.8012 + 6.592 1
-0.8012 - 6.592 1

-11.25765504

Roots of Denominator
-0.03019996745
-0.03448

-0.4996 + 3.129 1
-0.4696 - 3.129 1T
~1.063589349

-2.171

-14.64359316
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A.3.21 Plant Case 21

Plant Case: 21 Element: {1, 1}

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.0299951359 -0.01516 ~ 0.02343 1
-0.3886587722 + 4.551009274 I -0.3890844027 + 4.554074665 I
-0.3886587722 - 4.551009274 1 -0.3890844027 - 4.554074665 1T
-1.091958693 -0.8012 4+ 6.592 1

-0.8012 - 6.592 1
Factored form gain multiplier: -33.35473804

Plant Case: 21 Element: (1, 21}

Roots of Numerator Roots of Denominator
0 -0.03448
-0.0299951359 -0.03453
-0.3886587722 + 4.551009274 I -0.4996 + 3.129 1
-0.3886587722 - 4.551009274 I -0.4996 - 3.129 1
-1.091958693 -0.6861
-2.171

Factored form gain multiplier: -213.6299701
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Plant Case: 21 Element: (2, 1}

Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 I
-0.029%5951359 -0.01516 - 0.02343 I
-0.3885587722 + 4.551009274 I -0.4083 + 4.916 I
-0.3886587722 - 4.551009274 1 -0.4083 - 4.916 I

-1.091958693 -0.8012 + 6.592 1
-0.8012 - 6.592 1

Pactored form gain multiplier: -352.8332369

Plant Case: 21 Element: {2, 2}

Roots of Numerator Roots of Denominator
0 -0.03002242458
-0.02%98513¢59 -0.03448
~0.3886587722 + 4.551009274 1 -0.4996 + 3.129 1
-0.3886587722 - 4.551009274 1 -0.4996 - 3.129 1
~1.081958693 -1.088103978
=2.171

Factored form gain multiplier: -18.57997138
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A.3.22 Plant Case 22

Plant Case: 22 Element: (1,

Roots of Numerator

-0.0281768207

-0.5658911377 + 5.6216463 I
-0.5658911377 - 5.6216463 1
-1.442976725

Factored form gain multiplier:

Plant Case: 22 Element: {1,

Roots of Numerator

-0.0281768207
-0.5658911377
-0.5658911377
-1.442876725

+ 5.6216463 I
5.6216463 1

Factored form

gain multiplier:

1}

Roots of Denominator

-0.01516 + 0.02343 1

-0.01516 - 0.02343 I
-0.3943568208 + 4.656189818 I
-0.3943568208 - 4.656189818 I
-0.8012 + 6.592 1

-0.8012 -~ 6.592 1

-3.513486231
2}

Roots of Denominator
.031367399809
.03448

.4996 + 3.129 1
.4896 - 3.129 1
.8267337781

L171

-6.444844583
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Plant Case: 22 Element: {2, 1}

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.06281768207 -0.01516 - 0.02343 I
-0.5658911377 + 5.6216463 1 -0.379582757 + 4.364003618 1
-0.5658911377 - 5.6216463 I -0.379582757 - 4.364003618 1
-1.442976725 -0.8012 + 6.592 1

-0.8012 - 6.592 I
Factored form gain multiplier: -1.8038085946

Plant Case: 22 Element: (2, 2}

Roots of Numerator Roots of Denominator
0 -0.03008318398
-0.0281768207 -0.03448
-0.5658911377 + 5.6216463 I -0.4996 + 3.129 1
-0.5658911377 - 5.6216463 1 -0.4996 - 3.129 1
-1.442976725 -1.079585586

-2.171

Factored form gain multiplier: -2.639830848
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A.3.23 Plant Case 23

Plant Case: 23 Element: {1,

Roots of Numerator

-0.03096598996
-0.3853668983 + 4.706629116 I
-0.3853668983 - 4.706629116 I
-0.9691322627

Factored form gain multiplier:

Plant Case: 23 Element: {1,

Roots of Numerator

-0.03096598996
-0.3853668983 + 4.706629116 I
-0.3853668983 - 4.706629116 I
-0.9691322627

Factored form gain multiplier:

1}

Roots of Denominator

2]

.01516 + 0.02343 1

.01516 - 0.02343 I
.3943568208 + 4.656189818 I
.3943568208 - 4.656189818 I
.8012 + 6.592 I

.8012 - 6.592 1

-15.20079547

Roots of Denominator

.02634744696
.03448

.4996 + 3.129 1
.4996 - 3.129 1
.101319711

.171

.2438474




Plant Case: 23 Element: (2,

Roots of Numerator

-0.030965598996
-0.3853668983 + 4.706629116 I
-0.3853668983 - 4.706629116 I
-0.8651322627

Factored form gain multiplier

Plant Case: 23 Element: {2,

Roots of Numerator

-0.03096558996
-0.3853668983 + 4.706629116 I
-0.3853668983 - 4.706629116 I
-0.9691322627

Factored form gain multiplier:

1}

Roots of Denominator

-0.01516 + 0.02343 I

-0.01516 - 0.02343 1
-0.3748581309 + 4.266333269 I
-0.3748581309 - 4.266333269 I
-0.8012 + 6.592 1

-0.8012 - 6.592 1

: -9.114546368

2}

Roots of Denominator
.03008318398
.03448

.4996 + 3.129 1
.4996 - 3.129 1
.079585586

.171

-11.42100073
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A.3.24 Plant Case 24

Plant Case: 24 Element: (1, 1)

Roots of Numerator Roots of Denominator
0 -0.01516 + 0.02343 1
-0.02996 -0.01516 - 0.02343 1
-1.097 -0.8012 + 6.592 1

-0.8012 - 6.592 1
Factored form gain multiplier: -32.9
Plant Case: 24 Element: (1, 2}

Rcots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity
Plant Case: 24 Element: {2, 1}

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 24 Element: (2, 2}

Roots of Numerator Roots of Denominator
Y -0.03448
-0.3774 + 4.31¢155473 1 -0.4996 + 3.129 1
-0.3774 - 4.319155473 1 -0.4896 - 3.129 1
-2.171

Factored form gain multiplier: -11.65




B  Appendix B - Robert Betzold’s Design
B.1  Pe Matnx Transfer Functions From CAD Package

B.1.1 Plant Case 1

Plant Case: 1 Element: {1, 1}

Roots of Numerator Roots of Denominator
-0.087 + 0.7945 1 -0.009303144518 + 0.8902165661 I
-0.087 - 0.7945 I -0.009303144518 - 0.8902165661 I
-22.3459 -0.009359976213

~0.6203193063
-22.34857028

Factored form gain multiplier: 0.7278

Plant Case: 1 Element: (1, 2]}

Roots of Numerator Roots of Denominator
2.038 -0.009303144518 + 0.8902165661 I
-1.631 -0.009303144518 - 0.8902165661 1T
-22.3458% -0.009359976213

-0.6203193063
-22.34857028

Factored form gain multiplier: 0.3288683694
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Plant Case: 1 Element: {2, 1}

Roots of Numerator Roots of Denominator
-0.0603 -0.009303144518 + 0.8902165661 I
-2.438 -0.009303144518 - 0.8902165661 I
-22.3459 ~0.009359976213

-0.6203193063
-22.34857028

Factored form gain multiplier: 0.02317192691

Plant Case: 1 Element: {2, 2}

Roots of Numerator Roots of Denominator
0.0157 ~0.009303144518 + 0.8902165661 I
-0.5238 ~0.009303144518 - 0.8902165661 I
-22.3459 ~0.009359976213
~-22.77 ~0.6203183063

-22.34857028

Factored form gain multiplier: 0.023
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B.1.2 Plant Case 2

Plant Case: 2 Element: {1, 1}

Roots of Numerator Roots of Denominator
-0.137 + 1.017 1 0.001342491142 + 1.024203412 I
-0.137 - 1.017 1 0.001342491142 - 1.024203412 1
-30.297 0.0002242280203

-0.892504982
-30.27768085

Factored form gain multiplier: 0.7088

Plant Case: 2 Element: (1, 2}

Roots of Numerator Roots of Denominator
2.93 0.001342491142 + 1.024203412 1
-2.178 0.001342491142 - 1.024203412 1
-30.297 0.0002242280203

-0.892504982
-30.27768085

Factored form gain multiplier: 0.3608436364
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Plant Case: 2

Element: {2, 1}

Roots ¢f Numerator Roots of Denominator
1.58 0.001342461142 + 1.024203412 1
-0.095 0.001342491142 - 1.024203412 I
-30.297 0.0002242280203

~0.852504982
-30.27768085

Factored form gain multiplier: -0.04083621399

Plant Case: 2

Element: {2, 2)

Roots of Numerator Roots of Denominator
0.032 0.001342491142 + 1.024203412 1
-0.7228 0.001342491142 - 1.024203412 1
-29.46 0.0002242280203
-30.297 -0.892504982

Factored form

-30.27768085

gain multiplier: 0.028
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B.1.3 Plant Case 3

Plant Case: 3 Element: {1, 1}

Roots of Numerator

-0.0006 0
-0.006 -0
-0.153 + 0.5226 1 -0
-0.153 - 0.5226 1 -0
-4.12 -0

-1

-4

Factored form gain multiplier: 1.

Plant Case: 3 Element: {1, 2}

Roots of Numerator

1.78 0
-0.0006 -0
-0.006 -0
-0.932 -0
-4.12 -0

-1
-4

Factored form gain multiplier: 0

Plant Case: 3 Element: {2, 1}

.01371701971
.01371701971
.02524080608
.02524080608
.135459827
.114539658

434

.01371701971
.01371701971
.02524080608
.02524080608
.135459827
.114539658

.1352158809

B-5

+

Roots of Denominator

0.008810265786 I
0.008810265786 1
0.7384883801 I
0.7384883801 1

Roots of Denominator

0.008810265786 I
0.008810265786 I
0.7384883801 1
0.7384883801 1




Roots of Numerator Roots of Denominator
67.97 0
C -0.01371701971 + 0.008810265786 I
-0.006 -0.01371701971 - 0.008810265786 I
-0.093 -0 02524080608 - 0.7384883801 I
-4.12 -0.02524080608 + 0.7384883801 1
-1.135459827
-4.114539658

Factored form gain multiplier: -0.00456

Plant Case: 3 Element: ({2, 2}

Roots of Numerator Roots of Denominator

0.04 0

0 -0.01371701971 + 0.008810265786 I
-0.0006 -0.01371701971 - 0.008810265786 I
-1.26 -0.02524080608 - 0.7384883801 I
-3.79 -0.02524080608 + 0.7384883801 1
-4.12 -1.135459827

~4.114539658

Factored form gain multiplier: 0.

038

B-6




B.2  Pe Determinants From CAD Package

Plant Case: 1

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
-22.34582333 -0.009303144518 + 0.8902165661 I
~22.34597894 -0.009303144518 - (0.8902165661 I

-0.009359976213
-0.6203193063
-22.34857028

Plant Case: 2

Roots of Numerator of Det[Pe] Roots of Denominator of Det{Pe]
-30.2965961 0.001342491142 + 1.024203427 I
-30.297003% 0.001342491142 - 1.024203427 1
0.0002242280203
-0.8392504982

-30.27768085

Plant Case: 3

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
-0.0006 0

-0.006 -0.01371701971 + 0.008810265786 I
-4.119999964 -0.01371701971 - 0.008810265786 I
-4.120000036 -0.02524080608 - 0.7384883801 I

-0.02524080608 + 0.7384883801 I
-1.135459827
-4.114539658
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B.3  Q Matrix Transfer Functions From CAD Package

B.3.1 Plant Case 1

Plant Case: 1 Element: {1, 1}

Roots of Numerator Roots of Denominator
-22.3459 0.0157

-0.5238

-22.77

Factored form gain multiplier: 0.7278

Plant Case: 1 Element: {1, 2}

Roots of Numerator Roots of Denominator
-22.3459% 2.038
-1.631

Factored form gain multiplier: -0.0509

Plant Case: 1 Element: {2, 1}

Roots of Numerator Roots of Denominator
-22. 3456 -0.0603
-2.438

Factored form gain multiplier: -0.7224
Plant Case: 1 Element: {2, 2}

Roots of Numerator Roots of Denominator

-22.3459 -0.087 + 0.7945 I
-0.087 - 0.7945 1

Factored form gain multiplier: 0.023




B.3.2 Plant Case 2

Plant Case: 2 Element: {1, 1}

Roots of Numerator Roots of Denominator
-30.297 0.032

-0.7228

-29.46

Factored form gain multiplier: 0.7088

Plant Case: 2 Element: {1, 2}

Roots of Numerator Roots of Denominator
-30.297 2.93
-2.178

Factored form gain multiplier: -0.055

Plant Case: 2 Element: {2, 1}

Roots of Numerator Roots of Denominator
-30.297 1.58
-0.095

Factored form gain multiplier: 0.486
Plant Case: 2 Element: (2, 2}

Roots of Numerator Roots of Denominator

-30.297 -0.137 + 1.017 1
-0.137 - 1.017 1

Factored form gain multiplier: 0.028
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B.3.3 Plant Case 3

Plant Case: 3 Element: {1, 1}

Roots of Numerator Roots of Denominator
-0.006 0.04
-4.1199931 0

-1.26

-3.79

Factored form gain multiplier: 1.434

Plant Case: 3 Element: {1, 2}

Roots of Numerator Roots of Denominator
-4.1196931 1.78
-0.932

Factored form gain multiplier: -0.403

Plant Case: 3 Element: (2, 1}

Roots of Numerator Roots of Denominator
-0.0006 67.97
-4.1199931 0

-0.093

Factored form gain multiplier: 11.85
Plant Case: 3 Element: {2, 2}

Roots of Numerator Roots of Denominator

-4.1198931 -0.153 + 0.5226 1
-0.153 - 0.5226 1

Factored form gain multiplier: 0.038
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B.4 Q Matrix from CAD Package

B.4.1 Plant Case 1

Plant Case: 1 Element: {1, 1}

Roots of Numerator Roots of Denominator
-22.3459 0.0157
-0.5238
-22.77

Factored form gain multiplier: 0.7278

Plant Case: 1 Element: {1, 2}

Roots of Numerator Roots of Denominator
-22.3459 2.038
-1.631

Factored form gain multiplier: -0.0509

Plant Case: 1 Element: {2, 1}

Roots of Numerator Roots of Denominator
-22.3459 -0.0603
-2.438

Factored form gain multiplier: -0.7224
Plant Case: 1 Element: (2, 2}

Rocts of Numerator Roots of Denominator

~22.3459 -0.087 + 0.7945 1
-0.087 - 0.7945 I

Factored form gain multiplier: 0.023
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B.4.2 Plant Case 2

Plant Case: 2 FElement: {1, 1}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 2 Element: {1, 2}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 2 Element: {2, 1}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 2 Element: (2, 2}

Roots of Numerator

Factored form gain multiplier:

Roots of Denominator

0.7088

-0.055

Roots of Denominator

0.486

Roots of Denominator

-0.137 + 1.017 I
-0.137 - 1.017 1

0.028
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B.4.3 Plant Case 3

Plant Case: 3 Element: (1, 1}

Roots of Numerator Roots of Denominator
-0.006 0.04
-4.1199931 0

-1.26

-3.79

Factored form gain multiplier: 1.434

Plant Case: 3 Element: {1, 2}

Roots of Numerator Roots of Denominator
-4.11998931 1.78
-0.932

Factored form gain multiplier: -0.403

Plant Case: 3 Element: {2 1}

Roots of Numerator Roots of Denominator
-0.0006 67.97
-4.1199931 0

-0.093

Factored form gain multiplier: 11.85
Plant Case: 3 Element: {2, 2}

Roots of Numerator Roots of Denominator

-4.1159931 -0.153 + 0.5226 I
-0.153 - 0.5226 I

Factored form gain multiplier: 0.038
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